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Broadly neutralizing antibodies: What 
is needed to move from a rare event in HIV‑1 
infection to vaccine efficacy?
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Abstract 

The elicitation of broadly neutralizing antibodies (bnAbs) is considered crucial for an effective, preventive HIV-1 
vaccine. Led by the discovery of a new generation of potent bnAbs, the field has significantly advanced over the 
past decade. There is a wealth of knowledge about the development of bnAbs in natural infection, their specificity, 
potency, breadth and function. Yet, devising immunogens and vaccination regimens that evoke bnAb responses has 
not been successful. Where are the roadblocks in their development? What can we learn from natural infection, where 
bnAb induction is possible but rare? Herein, we will reflect on key discoveries and discuss open questions that may 
bear crucial insights needed to move towards creating effective bnAb vaccines.
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Background
The potency of the neutralization response to HIV-1 has 
long been underappreciated, as most of the antibodies 
identified were type-specific or had only limited breadth 
[1]. This only changed in the early 2000s, with the dis-
covery of the new classes of potent bnAbs [1, 2]. This 
positioned bnAb responses as the major goal of vaccine 
development and in prevention. Despite their potency 
and breadth, there is no evidence that bnAbs amelio-
rate disease progression in natural infection, as they are 
subject to viral escape like any autologous neutraliza-
tion activity [3–6]. Application of bnAbs as a therapeu-
tic vaccine in established infection is therefore limited to 
settings where activity over shorter intervals is required. 
This is similar to what has been discussed in treatment 
combinations that aim to eliminate the latent HIV-1 res-
ervoir [7]. In prevention, where bnAbs are considered 
both as a passively administered drug and are intended 
to be elicited by vaccines, their potential is obvious and 
has been underscored by numerous animal studies [1, 
2, 8]. The virus inoculum that needs to be combatted to 
prevent transmission is low [9]. bnAbs have a window 
of opportunity to prevent infection in the absence of 

an established cellular HIV reservoir and potentially in 
concert with effector functions of the immune system. 
However, challenges for the use of bnAbs for prevention 
remain high. Therapeutically, bnAbs could be selectively 
applied to patients harboring sensitive strains. In con-
trast, antibodies elicited by a vaccine and/or used in a 
prevention setting must be highly potent and have excep-
tional breadth, targeting a wide spectrum of globally cir-
culating HIV-1 strains.

Discoveries in the last decade have revealed that such 
elite neutralizing responses occur during natural infec-
tion, but are rare [10–14]. Initial hopes that delineation of 
the epitopes of identified elite bnAbs would allow rapid 
construction of matching immunogens were not ful-
filled. Reverse vaccinology and structure-guided immu-
nogen design based on these elite bnAbs brought much 
momentum to the field. The most recently developed 
immunogens are the first that induce Tier-2 neutralizing 
activity, but none of them has evoked a bnAb response 
to date [15, 16]. Therefore, natural infection remains the 
only system in which we can decipher the parameters 
that drive the evolution of bnAbs. Herein, we review key 
observations made on the determinants of bnAb devel-
opment by studying both individual bnAb donors and 
HIV-1 patient cohorts and mark open questions that 
need to be addressed.
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The complex interrelation of bnAb maturation 
and virus escape
Focused efforts to decipher antibody maturation path-
ways alongside virus evolution have facilitated recon-
struction of bnAb development in some individuals [3, 4, 
17–23]. It is generally appreciated that a complex inter-
play between escape virus and Ab response is needed 
to trigger bnAb evolution [22]. The role of virus diver-
sification, including superinfection, which can precede 
the emergence of breadth, has been underscored in sev-
eral studies [3, 5, 20, 22, 24–27]. Whether virus diversi-
fication is driving or is, in fact, a consequence of bnAb 
development remains difficult to dissect, as Env variabil-
ity also increases in response to bnAb pressure [28–31]. 
This iterative and circular nature of virus and antibody 
co-evolution that occurs in natural infection will be dif-
ficult to mimic by vaccination. Deciphering cause and 
consequence, as well as defining minimal necessary com-
ponents of bnAb development will be key for designing 
successful vaccine regimens.

Prolonged bnAb maturation does not necessarily lead 
to improved breadth. The highest frequency of bnAb 
activity is observed after approximately 3 years of infec-
tion [12, 14, 32–34]. However, further prolonged repli-
cation does not increase frequencies [12, 14, 32, 33] and 
can even lead to a decrease or loss of bnAb activity [20]. 
Hence, while a relatively long exposure to viral antigen 
is commonly needed in adult HIV-1 infection to mount 
bnAb responses, continued adaptation of early bnAbs 
can also lead to “off-track” antibodies that lack breadth 
but have increased autologous strain specificity [3, 17, 22, 
35]. Likewise, continued somatic hypermutation (SHM) 
will always generate “dead-end” antibodies harboring 
mutations that impede further development of functional 
antibodies [3, 17, 36]. SHM observed in isolated bnAbs 
often includes mutations not required for breadth devel-
opment [37]. Short bnAb maturation phases with tar-
geted breadth evolution must therefore be an ultimate 
goal for vaccine design.

Virus escape creates new epitopes that allow bnAb 
responses to mature [5, 24]. Slow virus escape may be 
beneficial for bnAb development, as this prolongs expo-
sure to the bnAb-sensitive epitope, thereby extending 
antigenic stimulation and increasing chances of bnAb 
maturation [38–40]. Along these lines, partial evasion 
of virus from bnAbs, as can occur during cell–cell trans-
mission [38, 41–43], allows the bnAb-sensitive virus to 
persist, ensuring sustained epitope presentation to the 
maturing antibody.

The virus population is not only shaped by the bnAb 
lineage, but is also subject to pressure of the vigorous 
type-specific antibody response each patient mounts. 
This can, in turn, substantially impact bnAb evolution. 

Early bnAb development may be compromised through 
competitive exclusion by strain-specific antibodies 
that target the same epitope [44, 45]. Yet, cooperation 
between different antibody lineages may also facilitate 
bnAb development by driving the virus into escape muta-
tions that prevent full escape from bnAb lineages [18, 
19, 40]. Antibody helper lineages can be strictly strain-
specific [40] or mature into bnAbs [19]. Understand-
ing whether the development of multiple bnAb lineages 
[5] and bnAb/helper [18] tandems are common or rare 
events will be essential to appreciate (1) their impor-
tance and (2) the need to incorporate similar help into 
vaccination strategies. Of note, recent reports have sug-
gested that passively administered bnAbs may perform 
antibody helper functions. Therapeutic administration of 
the bnAb 3BNC117 to viremic individuals enhanced het-
erologous plasma neutralization breadth beyond escape 
to 3BNC117 [46]. Passive immunization of newborn 
macaques with nAbs at sub-neutralizing doses before 
oral SHIV challenge led to rapid elicitation of an autolo-
gous neutralization response and early control of viremia 
[47].

Factors that drive bnAb development
A range of factors that promote bnAb development 
has been implicated and several confirmed across dif-
ferent cohorts [6, 11, 12, 14, 32, 33, 48–50] (Tables 1, 2 
and Fig.  1). These studies highlight that a combination 
of partly interdependent factors, which are linked with 
disease progression, direct bnAb development. Several 
prominent drivers of bnAb development are linked to 
persistent antigenic stimulation. The independent impact 
of viral load, infection length and diversity on bnAb fre-
quency has been demonstrated [12, 14, 33, 48, 49]. These 
factors act in concert to ensure consistent antigenic 
stimulation. High viral load was the factor most consist-
ently found to positively influence neutralization breadth 
across cohorts [6, 11, 12, 14, 32, 33, 48–51]. However, 
while rates of bnAb activity are significantly higher 
amongst individuals with high viral load, breadth can 
also develop in HIV-1 controllers, although commonly at 
lower frequency [11, 34, 39, 51–53]. Thus, high antigen 
loads promote bnAb evolution but are certainly not the 
sole driving force.   

Two other parameters linked to extended antigenic 
stimulation, virus diversity and length of infection, also 
increase the likelihood of bnAb elicitation [11, 12, 14, 48, 
49]. This highlights that exposure to antigen over pro-
longed periods of time aids bnAb evolution. Env diversi-
fication inevitably increases during protracted infection, 
which is mostly driven by the consecutive rounds of Ab 
maturation and virus escape. Env diversity must therefore 
be viewed as both cause and consequence of neutralizing 
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antibody maturation. Emerging escape variants may gen-
erate new epitopes on Env that engage novel antibody 
germlines and start a bnAb lineage, as demonstrated 
for individual donors [5, 24]. The presence of multiple 
transmitted founder (T/F) viruses as reported for intra-
venous drug users (IDUs), as well as in superinfection, 
similarly expose the immune system to high Env diver-
sity. In a recent large cohort study, IDUs showed mod-
estly higher frequency of bnAb activity [12, 54]. Whether 
this is a result of higher diversity or other factors intrinsic 
to HIV infection of IDUs remains to be determined. Env 
diversity has been postulated as a driver of bnAb activ-
ity in cases of superinfection [3, 20, 25–27]. Nevertheless, 

superinfection does not guarantee the development of 
bnAb activity, as recent studies revealed [55, 56]. Diver-
sity may have a dual role in bnAb development. Highly 
diverse Env populations may have an increased chance to 
harbor a specific Env variant that is capable of initiating a 
bnAb lineage. Continuously increasing Env diversity, on 
the other hand, provides a means to support bnAb matu-
ration by presenting multiple antigenic variants.

The impact of the infecting virus
As evidenced by the unresolved impact of viral diversity 
in steering bnAb responses, the overall role of the infect-
ing virus remains to be defined. What are the genetic 

Table 1  Overview of patient cohort studies investigating viral and disease factors linked with bnAb development

a  Indicates total number of subjects included. Specific analyses may have been carried out on subsets of these numbers

Reference Number 
of subjectsa

Investigated viral 
and disease factors

Association with breadth Additional information on investigated parameter

Doria-Rose et al. [11] 103 Viral load Positive Contemporaneous

Infection duration None

Transmission mode None

CD4+ T cell levels None Contemporaneous

History of ART use None

Euler et al. [6] 82 Viral load Positive Set point

CD4+ T cell levels Negative Set point

Disease progression None

Gray et al. [33] 40 Viral load Positive Set point

CD4+ T cell levels Negative 6 months post-infection

CD4+ T cell decline Positive Difference between levels pre-infection and at 6 months

Landais et al. [14] 439 Viral load Positive Set point

Infecting subtype Positive Subtype C infection

Infection duration Positive

Transmission mode None

CD4+ T cell levels Negative All tested time points beyond 6 months post-infection

Mikkell et al. [32] 38 Viral load Positive Contemporaneous

Piantadosi et al. [48] 70 Viral load Positive Set point

Viral diversity Positive Env

CD4+ T cell levels None Contemporaneous

Disease progression None

Rusert et al. [12] 4484 Viral load Positive Contemporaneous

Viral diversity Positive Pol

Infecting subtype None

Infection duration Positive

Transmission mode Weakly positive Modestly higher bnAb activity in IDUs

CD4+ T cell levels Weakly positive Contemporaneous; modest association with cross-
neutralization activity

Sather et al. [49] 39 Viral load Positive Average of all tested time points

Infection duration Positive

CD4+ T cell levels None Average of all tested time points

van Gils et al. [50] 35 Viral load Positive Set point

CD4+ T cell levels Negative Set point
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Table 2  Overview of patient cohort studies investigating host and immune factors linked with bnAb development

Reference Number 
of subjectsa

Investigated host and immune factors Association with breadth

Boliar et al. [90] 41 Total plasma IgG Positive

B cell expression of:

PD-1 None

BTLA None

Ki67 None

CD95 None

Cohen et al. [78] 15 CXCR5+ CD4+ T cells Positive

CXCR5+ PD-1+ CD4+ T cells Positive

CXCR5+ PD-1+ ICOS+ CD4+ T cells Positive

Plasma CXCL13 Positive

Plasma IL21 None

Plasma BAFF None

Other cytokines and chemokines None

CD3−CD19+ CD27− naïve B cells None

CD3− CD19+ CD27+ memory B cells None

Env-specific CD3− CD19+ CD27+ gp120+ memory B 
cells

None

CXCR5 expression on B cells None

Expression of activation-associated genes Positive

Expression of IFN-stimulated genes IFI27 and ISG15 Positive

Expression of CXCL13 and RGS13 Positive

Doria-Rose et al. [51] 148 Total CD19+B cells None

CD19+IgG+ B cells None

CD19+ CD27+ memory B cells None

CD19+ CD20− CD27+++ CD38+++ plasmablasts None

Env-specific CD19+ gp140+ B cells None

Doria-Rose et al. [11] 103 Ethnicity None

Gender None

Age None

HLA genotype None

Dugast et al. [53] 163 Plasma CXCL13 Positive

Plasma sCD40L Positive

Plasma RANTES Positive

Plasma TNF-α Positive

Plasma IP-10 Positive

Other cytokines and chemokines None

Havenar-Daughton et al. [81] 228 Plasma CXCL13 Positive

Kadelka et al. [54] 4281 IgG1, IgG2 and IgG3 binding to trimeric Env Positive

IgG1 binding to Env-gp120 Positive

IgG2 binding to Env-gp120 Positive

IgG3 binding to MPER Positive

IgG3 binding to p17 and p24 Positive
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Table 2  (continued)

Reference Number 
of subjectsa

Investigated host and immune factors Association with breadth

Landais et al. [14] 439 Gender None

Age None

Geographical origin None

Total plasma IgG Positive

Env-specific IgG binding titer Positive

Env-specific IgG binding avidity None

HLA genotype Positive (HLA-A*03)

KIR genotype None

Locci et al. [79] 328 CXCR5+CD4+ T cells None

ICOS+PD-1+++ CXCR5+ CD4+ T cells None

PD-1+ CXCR3−CXCR5+CD4+ memory Tfh cells Positive

CXCR3− CXCR5+CD4+ T cells None

PD-1+CXCR3+ memory Tfh cells None

Mabuka et al. [83] 22 Plasma CXCL13 Positive

Plasma BAFF None

CD19+CD21−CD27+ activated memory B cells None

CD19+CD21−CD27− tissue-like memory B cells None

CD19+CD21+CD27+ resting memory B cells None

CD19+CD27+CD38+++ plasmablasts None

Mikkell et al. [32] 38 CD4+ and CD8 + T cell expression of:

Ki67 None

CD57 None

CD38 Positive (CD4+ T cells)

PD-1 Positive (CD4+ T cells)

HLADR None

Moody et al. [75] 239 HLA genotype None

Plasma autoantibodies Positive

PD1+CXCR3−CXCR5+CD4+ resting memory Tfh cells Positive

CD25+ Foxp3+ CD4+ Treg cells Negative

CD25+Foxp3+CXCR5+CD4+ follicular Treg cells None

PD-1 expression on CD25+ Foxp3+ CD4+ Treg cells Positive

PD-1 expression on CD25+Foxp3+CXCR5+CD4+follicular 
Treg cells

Positive

HLA-DR expression on CD4+ Treg cells Positive

CTLA-4 expression on CD4+ Treg cells Positive

LAG-3 expression on CD4+ Treg cells Positive

Genome-wide mutations None

Ranasinghe et al. [77] 67 Gag-specific CD4+ responses Positive

Gp41- specific CD4+ responses Positive

Gp120-specific CD4+ responses None
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determinants of the virus that trigger a bnAb lineage? As 
discussed above, it is possible that viral diversity can fos-
ter bnAb evolution, but whether diversity at the level of 
the infecting virus (superinfection, multiple T/F viruses) 
is decisive or not, has not been resolved.

Understanding the role of the T/F viruses may be key 
[9]. While no large differences in bnAb elicitation have 
been seen in male to male and heterosexual transmis-
sion [11, 12, 14], bnAb activity is found more frequently 
after mother to child transmission [57, 58] (see section 
below) and possibly also in IDUs [12]. Whether the trans-
mitted virus or other factors that differ in these settings 
underlie the elevated chances to develop bnAb responses 
needs to be dissected. Differential glycosylation, vari-
able loop length and specific motifs linked with certain 
bnAb specificities may play a role, but could also differ 
dependent on subtype and transmission mode [59–64]. 
However, causal relationships between prospective Env 
features and neutralization breadth remain difficult to 
establish. This is also true for deciphering Env determi-
nants that trigger germline precursors of bnAb lineages 
[65–69]. With few exceptions [19, 20, 22], inferred ger-
mline versions of bnAbs often lack measurable binding 
activity to Env probes, which are efficiently recognized 
by the mature bnAbs [65–67, 69–71]. This suggests that 
Envs with distinct characteristics are needed for trig-
gering these bnAbs. Intriguingly, some reports suggest 
that inferred germline ancestors of Abs with non/low 

neutralizing activity frequently bind a range of recombi-
nant Envs with high affinity [45, 72]. Larger numbers of 
bnAbs and non-neutralizing antibodies need to be inves-
tigated to confirm this disparity. However, based on their 
comparative ease to engage diverse Env variants, non/
low-neutralizing antibodies may have a selection advan-
tage in the germinal center (GC) reaction.

A main issue that has not been clarified is whether 
the capacity of a virus to induce a bnAb is (1) restricted 
to a specific Env variant that is only transiently present 
and lost upon Env evolution or (2) preserved over pro-
longed time periods and may even be stable over multiple 
transmissions. Despite continuous Env evolution, there is 
emerging proof that some Env traits are stable and evoke 
similar responses. Clear evidence for this stems from the 
comparison of bnAb specificities mounted in subtype B 
infection compared to non-B infection. Non-B infec-
tion proved superior in mounting V2-glycan-directed 
responses [12], which is supported by the fact that none 
of the isolated potent V2 bnAbs stems from subtype B 
infection or targets subtype B viruses efficiently [73]. 
In contrast, subtype B viruses were more effective in 
mounting CD4bs responses [12]. Thus, while the genetic 
subtype had no impact on the frequency of bnAb activ-
ity, it shaped the specificity of the response. Thus, specific 
Env features in the respective virus subtypes that direct 
the immune response towards a certain specificity must 
exist.

Table 2  (continued)

Reference Number 
of subjectsa

Investigated host and immune factors Association with breadth

Richardson et al. [82] 23 ADCC None

ADCP None

ADCD Positive

ADCT Positive

Fc polyfunctionality Positive

FcR binding Positive

C1q binding Positive

IgG subclass diversity Positive

IgG2 binding to trimeric Env, gp120, V3 Positive

IgG2 binding to p24 Positive

IgG4 binding to trimeric Env, gp41, V2 Positive

Plasma CXCL13 Positive

AID expression in B cells Positive

Rusert et al. [12] 4484 Ethnicity Positive (blacks compared to whites)

Gender Weakly positive (modestly higher breadth in men)

Sather et al. [49] 39 Env-specific IgG binding titer None

Env-specific IgG binding avidity Positive

CD8+ T cell levels None
a  Indicates total number of subjects included. Specific analyses may have been carried out on subsets of these numbers
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In principle, bnAb development could be facilitated 
by a range of phenotypic virus features that influence 
epitope exposure and accessibility. These include, Env 
conformation and stability, the degree of shielding, and 
Env density on the virion surface. Unravelling genetic 
and/or structural Env features that promote or suppress 
bnAb development will be crucial for vaccine success.

Immune environment
bnAbs often show poly/autoreactivity (reviewed in 
[74]) and autoantibody frequency has been reported to 
be high in bnAb-developing individuals [75]. Autoreac-
tivity is particularly strong in the case of MPER bnAbs 
2F5 and 4E10, and immune tolerance mechanisms 
must be overcome for the induction of MPER bnAb 
responses in humanized mouse models [74]. Therfore, 
reduced immune control may foster bnAb development 
in certain cases. An indication that this may occur in 
natural HIV infection stems from the observation that 
low CD4+ T cell levels and a high rate of CD4+ T cell 
decline appear to be linked with broad neutralization 

in some cohorts [6, 14, 33, 50]. While the distribu-
tion of CD4+ T cell subsets was not assessed directly 
in most studies, lower CD4+ T cell levels may implicate 
reduced levels of regulatory CD4+ T cells that may feed 
into bnAb development. However, a link between low 
CD4+ T cell levels and neutralization breadth was not 
observed universally [11, 48, 49, 51]. This may in part 
be due to the inverse association between CD4+ T cell 
counts and viral load [76]. With viral load confirmed as 
an independent determinant of bnAb evolution, assess-
ing the specific effect of CD4+ T cell levels requires 
cohorts with the power to dissect confounding fac-
tors. Controlling for a range of factors, including viral 
load and infection length, the Swiss 4.5k Screen study-
ing 4484 individuals found only a marginal independ-
ent impact of lower CD4+ T cell levels in individuals 
that mounted low levels of breadth and not those who 
had potent bnAb activity [12]. Of note, in the same 
cohort CD4+ T cell levels were found not to correlate 
with binding antibody responses to gp120, but a strong 
inverse effect on MPER IgG1 levels was observed [54]. 
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This supports the notion that while MPER antibodies 
may benefit from a partially impaired immune system, 
the majority of bnAbs will not benefit from an envi-
ronment with reduced CD4+ T cells. In fact, a recent 
study suggests that perturbations in the CD4+ T cell 
environment are linked with neutralization breadth. 
bnAb inducers had lower numbers of PD-1high regula-
tory CD4+ T cells, highlighting a decreased regulatory 
capacity [75]. Extensive levels of SHM are commonly 
found in bnAbs. HIV-specific CD4 T cell responses 
have been linked with neutralization breadth [77] and 
elevated GC activity in bnAb inducers has been indi-
cated by increased frequency of circulating memory T 
follicular helper (TFH) CD4+ cells, particularly early in 
infection [75, 78–80]. Likewise, elevated plasma levels 
of CXCL13, a cytokine involved in B cell migration to 
the GC, and increased expression of activation-induced 
cytidine deaminase (AID), the enzyme that orchestrates 
Ig hypermutation and class switch recombination, was 
observed in bnAb-inducers [53, 78, 81–83].

What stimulates such beneficial immune environ-
ments has not been resolved, but host genetics are 
implicated by several lines of evidence. A decreased 
prevalence of the protective allele HLA-B*57 [84] 
(linked with slower disease progression) and expres-
sion of a specific HLA allele (HLA-A*03) [14] have 
been implicated. Likewise, other HLA variants and 
SNPs within the MHC complex may directly or indi-
rectly impact bnAb evolution via influencing viral load 
[11, 14, 75, 84]. As highlighted by CD4bs bnAbs, some 
bnAb specificities are restricted to a limited set of Ig 
heavy chain germline alleles, which encode signature 
features relevant for the specific epitope recognition 
[71]. Hence, it is possible that the ability to produce 
these types of antibodies is genetically restricted. How-
ever, no overall difference in the immunoglobulin gene 
repertoires of bnAb inducers and non-neutralizers has 
been observed to date [85].

In support of a strong genetic influence, individu-
als with black ethnicity were found to more frequently 
induce bnAb activity compared to white study partici-
pants [12] and have enhanced antibody binding IgG1 
responses [54]. Ethnicity-dependent differences in the 
antibody response to a HIV-1 gp120 immunogen have 
independently been reported [86]. While the influence 
of socio-economic factors cannot be excluded, focused 
studies to reveal a potential genetic determinant are 
highly warranted. Depending on the genetic determi-
nants identified this may or may not be relevant to vac-
cines. Nevertheless, their contribution needs to be 
determined to understand if future HIV bnAb-inducing 
vaccines can be expected to be effective in the whole 
population or only in proportions thereof.

Specific antibody signatures are linked 
with neutralization breadth
With increased knowledge about parameters that are 
linked with bnAb development in natural infection 
(Tables  1, 2 and Fig.  1), opportunities to define factors 
that promote bnAb activity and surrogate markers that 
predict bnAb evolution are now within reach. An impor-
tant step towards this came from recent systems serology 
studies that investigated multiple aspects of the antibody 
response repertoire in vaccine recipients, non-neutraliz-
ers and individuals who developed broad neutralization 
activity [53, 54, 82, 87–89].

Titer [14] and avidity [49] of IgG binding responses 
to Env-based antigens have been reported to correlate 
with neutralization breadth. IgG subclass distribution 
of the HIV-1 antigen response shows a distinct IgG1-
driven pattern in bnAb inducers, suggesting the pres-
ence of immune regulatory mechanisms that promote 
IgG1 responses [54]. In addition, elevated IgG2 and 
IgG4 responses against HIV antigens in bnAb-inducers 
compared to non-neutralizers have been observed early 
in infection [82]. This may in part reflect higher antigen 
exposure, as IgG2 anti-Env responses are strongly driven 
by viral load [54]. Diverse parameters that influence 
the development of neutralization breadth (Tables  1, 2) 
also impact binding antibody responses to HIV-1 but in 
an antigen-dependent manner [54], underscoring the 
complexity of these interrelations. Differential antibody 
profiles observed in response to HIV-1 Env vaccination 
regimens [87–89] suggest that modulating the immune 
response towards patterns that may favor bnAb evolu-
tion could be possible. However, this requires detailed 
knowledge of which antibody features are needed, as 
well as defined strategies to shift responses in the desired 
direction.

The importance of effector functions in the protective 
effect of neutralizing antibodies has been long recognized 
and both activity of non-neutralizing and neutralizing 
antibodies in the context of effector functions impli-
cated [53, 91–96]. These include immune complex (IC) 
formation, antibody dependent complement deposition 
(ADCD) and lytic (ADCL) activity, antibody dependent 
cytotoxicity (ADCC), antibody dependent trogocytosis 
(ADCT) and antibody dependent phagocytosis (ADCP). 
Increased effector activity of antibodies that bind to Env-
expressing infected cells with high affinity, like bnAbs, 
may deliver superior antiviral activity allowing elimina-
tion of infected cells—a goal of HIV-1 cure approaches 
[94–96].

IgG subtypes differ in their capacity to deliver effec-
tor functions and differential glycosylation of the Fc also 
influences the interaction with Fc receptors and the effi-
cacy of the effector responses [97]. Considerable evidence 
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suggests that steering immune responses towards certain 
Ig subclasses and/or Fc modifications needs to be evalu-
ated. HIV-1 controllers display antibody subclass profiles 
that are skewed towards IgG1 or IgG3 responses with the 
ability to coordinate several effector functions including 
ADCC and ADCP that suppress viral replication [98–
100]. Similarly, immune correlates of protection in the 
RV144 trial have been linked to antibody effector func-
tions [101, 102]. Systems serology approaches revealed 
that polyfunctional Fc-effector profiles of anti-Env 
responses are a critical component of viral control in nat-
ural infection [98–100, 103] and distinguish responses to 
different vaccine regimens [87–89]. When and where Fc 
effector activity is important, whether improved signaling 
capacity through immune complex formation or activa-
tion of the cell killing mechanism is required, needs to be 
determined. Common immune determinants that regu-
late both Fab and Fc mediated activities may be involved, 
since Fc polyfunctionality and potency early in infection 
have been associated with the propensity to develop neu-
tralization breadth [82]. Increased levels of ADCD and 
ADCT were observed early (but not later) in infection in 
individuals who developed bnAbs [82]. This stresses the 
complexity in dissecting cause and consequence also in 
this context. We need to decipher to what extent Fc effec-
tor functions actively foster bnAb development and/or 
develop in parallel (as they depend on the same immune 
factors) in order to appreciate the importance of stimu-
lating Fc effector environments by vaccination.

HIV‑1 infected infants develop bnAbs more 
frequently, more rapidly and with less SHM
While most bnAbs have high levels of SHM and evolved 
after prolonged maturation pathways, this seems not to 
be needed in all settings. A proportion of adults develop 
bnAb activity comparatively rapidly [12, 20, 22, 32]. In 
infant HIV infection, bnAb evolution is generally fast and, 
with more than 70% of cases developing breadth, also 
substantially more frequent than in adults [57, 58]. Deci-
phering the underlying causes of slow and rapid bnAb 
evolution in adults and infants may open new poten-
tials for vaccine design and immunization strategies. 
The first infant bnAb characterized in detail highlights 
the potential [104]. In line with a more direct develop-
mental pathway in infants, the N332 glycan-dependent 
supersite-targeting bnAb BF520.1, isolated from a HIV-1 
infected infant 1  year post-infection, has notably low 
levels of SHM (6.6% nt) and lacks heavy and light chain 
indels compared to adult V3 glycan region-targeting 
bnAbs [104]. If conditions that allow rapid development 
of low SHM bnAbs like BF520.1 prove to be transferrable 
to other settings this may open immense potential to cre-
ate an effective bnAb vaccine in adults. Pinpointing the 

causative effects will however be challenging. A range of 
factors differ between adult and infant infection and sev-
eral may feed into each other. While it seems surprising, 
the infant immune system appears to provide a better set-
ting for bnAb development. In early life, B cell responses 
are partially restricted, the Ig germ-line repertoire is not 
fully developed and the co-stimulatory network is not yet 
fully functional, leading to compromised B cell responses 
with lower SHM and heterogeneity [105, 106]. IgG sub-
class distribution differs markedly in infants with IgG1 
and IgG3 levels, the most relevant subclasses for neutral-
izing HIV responses [54], rising sooner to adult-like con-
centrations than IgG2 and IgG4 [106, 107].

While antibodies with lower SHM may prove to be 
common in infants, it is intriguing that bnAbs with low 
SHM have not been described in adults. Does the adult 
immune system not favor the development of low SHM 
bnAbs? A potential scenario could be that cross-reactive 
antibodies that bind to HIV Env exist in adults. Follow-
ing the dogma of original antigenic sin [108], instead of 
priming a de novo antibody response, the evolution of 
the Env antibody response would be restricted to affinity 
maturation of a pre-existing cross-reactive antibody. This 
may limit the response and require more extensive SHM 
to reach neutralization breadth. Of note, cross-reactivity 
with unrelated proteins and/or host antigens have been 
described for several HIV bnAbs [23, 109–111].

Vertical transmission is distinct from all other HIV-1 
transmissions, as maternal antibodies are transferred 
and remain present for prolonged time periods. The 
role of maternal Abs in influencing transmission risk is 
still debated [112–115]. Irrespective of their potential 
in preventing transmission, it is intriguing to speculate 
that maternal antibodies may function as helper anti-
bodies [19, 40]. The presence of maternal Abs may allow 
immune-focusing that aids neutralizing antibody devel-
opment, as described for passive immunization of infant 
macaques [47]. Influence of maternal antibodies on vac-
cine responses in infants has been reported [107] and 
may comprise a number of mechanisms including acti-
vation of the immune system through IC formation that 
aid bnAb evolution. Specific immune-focusing of the 
infant response could also be envisaged through binding 
of immunodominant epitopes by maternal antibodies, 
shielding these from access by infant BCRs and thereby 
directing the Ab response to other sites without compet-
ing for survival signals in the GC reaction. In the setting 
of HIV-1 infection, this immediately raises the question 
whether neutralizing or non-neutralizing antibodies or 
even combinations thereof would be needed to create 
effective immune-focusing [116].

High viral load—a strong influence on bnAb evolution 
in adults—is frequent in infant HIV-1 infection in the 
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first 2 years of life [117, 118] and may also promote infant 
bnAb development as seen in adult HIV infection [11, 12, 
14, 32, 33, 48–50]. Importantly, vertical transmission may 
also create bottlenecks that differ from sexual transmis-
sion, potentially favoring transmission of phenotypically 
distinct strains that favor bnAb triggering. Defining the 
phenotypic properties of T/F viruses from vertical trans-
mission cases that developed Ab breadth is of high rel-
evance. The best case scenario for vaccine design would 
be that specific Env properties of infant T/F viruses are 
the underlying cause of the frequent and rapid bnAb 
evolution in infant HIV infection. Of note, the T/F virus 
BG505, derived from an infant that developed a bnAb 
response [119] is the currently most thoroughly studied 
trimeric Env immunogen and focus of diverse immuniza-
tion strategies [119, 120].

Conclusion
Detailed analysis of determinants that shape bnAb 
responses in natural infection have led to the identi-
fication of a range of factors that are linked with the 
development of neutralization breadth. However, so 
far we lack formal proof for which factors are ulti-
mately causative in bnAb elicitation and which evolve 
alongside. Delineating the causes and consequences, 
as well as defining parameters that need to be incor-
porated into vaccine regimens will be critical. Figure 2 
highlights key questions that need to be addressed, 
based on the current state of the field. Resolving these 

topics, ranging from the impact of the Env immuno-
gen and the immune environment in which the bnAb 
response favorably evolves, to understanding why the 
infant HIV-1 infection is superior in mounting bnAb 
responses, will be challenging. However, this is ulti-
mately necessary to move HIV vaccine design forward.
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