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Characterization of the HIV-1 RNA associated
proteome identifies Matrin 3 as a nuclear
cofactor of Rev function
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Abstract

Background: Central to the fully competent replication cycle of the human immunodeficiency virus type 1 (HIV-1)
is the nuclear export of unspliced and partially spliced RNAs mediated by the Rev posttranscriptional activator and
the Rev response element (RRE).

Results: Here, we introduce a novel method to explore the proteome associated with the nuclear HIV-1 RNAs. At
the core of the method is the generation of cell lines harboring an integrated provirus carrying RNA binding sites
for the MS2 bacteriophage protein. Flag-tagged MS2 is then used for affinity purification of the viral RNA. By this
approach we found that the viral RNA is associated with the host nuclear matrix component MATR3 (Matrin 3) and
that its modulation affected Rev activity. Knockdown of MATR3 suppressed Rev/RRE function in the export of
unspliced HIV-1 RNAs. However, MATR3 was able to associate with Rev only through the presence of RRE-
containing viral RNA.

Conclusions: In this work, we exploited a novel proteomic method to identify MATR3 as a cellular cofactor of Rev
activity. MATR3 binds viral RNA and is required for the Rev/RRE mediated nuclear export of unspliced HIV-1 RNAs.

Introduction
Viruses have evolved to optimize their replication poten-
tial in the host cell. For this purpose, viruses take advan-
tage of the molecular strategies of the infected host and,
therefore, represent invaluable tools to identify novel
cellular mechanisms that modulate gene expression [1].
The primary viral transcription product is utilized in

unspliced and alternatively spliced forms to direct the
synthesis of all human immunodeficiency virus (HIV-1)
proteins. Although nuclear export of pre-mRNA is
restricted in mammalian cells, HIV-1 has evolved the
viral Rev protein to overcome this restriction for viral
transcripts [2,3], recently reviewed in [4]. Rev promotes
the export of unspliced and partially spliced RNAs from
the nucleus through the association with an RNA ele-
ment called the Rev response element (RRE) that is pre-
sent in the env gene [5-7]. In the cytoplasm, the RRE-
containing HIV-1 transcripts serve as templates for the

expression of viral structural proteins, and the full-length
unspliced forms serve as genomic RNAs that are pack-
aged into viral particles. In order to fulfill its function,
Rev requires the assistance of several cellular cofactors
(reviewed in [8]). Rev interacts with a nucleocytoplasmic
transport receptor, Exportin 1 (CRM1), to facilitate the
export of viral pre-mRNAs [9]. Rev also engages the
activity of cellular RNA helicases [10] and capping
enzymes [11] that are required for the correct nuclear
export of Rev interacting viral RNAs.
The nucleus is a complex organelle where chromo-

somes occupy discrete territories and specific functions
are carried out in sub-nuclear compartments [12-15].
Transcription, for example, has been proposed to occur
in ‘factories’ where genes and the RNA polymerase com-
plex transiently assemble [16,17]. Once integrated, the
HIV-1 provirus behaves like a cellular gene, occupying a
specific sub-nuclear position and takes advantage of the
cellular machinery for transcription and pre-mRNA pro-
cessing [18-21]. Control of HIV-1 gene expression is cri-
tical for the establishment of post-integrative latency
and the maintenance of a reservoir of infected cells
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during antiretroviral therapy [22]. Beyond transcriptional
control, processing of the RNA may also concur in the
establishment of a latent phenotype [23].
The spatial positioning of chromatin within the

nucleus is maintained by a scaffold of filamentous pro-
teins generally known as the nuclear matrix [24].
Although the exact function of the nuclear matrix is still
debated [25], several of its components have been impli-
cated in nuclear processes that include DNA replication,
repair, transcription, RNA processing and transport
[26-28]. Matrin3 (MATR3) is a highly conserved compo-
nent of the nuclear matrix [29-31]. MATR3 is a 125 kDa
protein that contains a bipartite nuclear localization sig-
nal (NLS), two zinc finger domains, and two canonical
RNA recognition motifs (RRM) [32]. Little is known
about the function of MATR3. A missense mutation in
the MATR3 gene has been linked to a type of progres-
sive autosomal-dominant myopathy [33]. MATR3,
together with the polypyrimidine tract-binding protein
associated splicing factor (PSF) and p54nrb, has been
implicated in the retention of hyperedited RNA [34].
Recently, MATR3 has also been involved in the DNA
damage response [35]. Hence, MATR3 may be at the
crossroad of several nuclear processes, serving as a plat-
form for the dynamic assembly of functional zones of
chromatin in the cell nucleus in a so-called ‘functional
neighborhood’ [36].
In the present work, we developed a novel proteomic

approach for the identification of host factors involved
in nuclear steps of HIV-1 RNA metabolism. In our pro-
teomic screen, we identified MATR3, and we provide
evidence that it binds viral RNA and is required for
Rev- activity.

Results
Generation and characterization of cell lines expressing
tagged HIV-1 RNAs
The MS2 phage coat protein is a well-described tool for
RNA tagging [37]. Modified MS2 homodimers bind with
high affinity to a short RNA stem loop that can be engi-
neered in multimers in the RNA of interest for various
purposes. On one hand, MS2 fused to the green fluores-
cent protein (GFP) has been used to visualize mRNAs
in living cells allowing for the kinetic analysis of mRNA
biogenesis and trafficking [38-40]. Alternatively, MS2
fused to the maltose binding protein (MBP) has been
used to purify the spliceosome by affinity chromatogra-
phy of cellular extracts [41]. Recently, to visualize and
analyze the biogenesis of HIV-1 mRNA, we inserted
twenty-four MS2 binding sites in the 3’UTR of an HIV
vector and demonstrated that this system fully recapitu-
lates early steps of HIV-1 transcription [42,43].
In this work, we aimed to develop an MS2-based

approach to identify novel host factors associated with

HIV-1 RNA. To this end we took advantage of two
HIV-1 derived vectors called HIV_Exo_24 × MS2
(HIVexo) and HIV_Intro_24 × MS2 (HIVintro),
described earlier [42-45], which carry the MS2 tag either
in the exonic or in the intronic part of the viral
sequence, respectively (Figure 1A andAdditional File 1).
These HIV-1 reporter vectors contain the cis acting
sequences required for viral gene expression and down-
stream steps in replication: the 5’ LTR, the Tat respon-
sive region TAR, the major splice donor (SD1), the
packaging signal ψ, a portion of the gag gene, the Rev
responsive region RRE, the splice acceptor SA7 flanked
by its regulatory sequences (ESE and ESS3), and the 3’
LTR that drives 3’-end formation (Figure 1A). The
HIVintro vector carries additionally the reporter gene
coding for the cyan fluorescent protein fused with per-
oxisome localization signal (ECFPskl). Moreover, place-
ment of the 24xMS2 tag inside the intron of the
HIVintro vector increases the probability of purifying
proteins involved in early nuclear steps of HIV-1 RNA
processing [44]. To demonstrate that it was feasible to
pull-down proteins associated with viral RNA via flag-
tagged MS2, we transfected 293T cells with HIVintro,
together with a construct expressing the Tat trans-acti-
vator fused to CFP and a construct expressing a flag-
tagged MS2nls. Total cell extracts were immunoprecipi-
tated with anti-flag antibodies and blotted against GFP
or flag. As shown in Figure 1B, Tat-mediated viral
expression is indicated by the presence of reporter
CFPskl in the lysates (lanes 5 and 7). Importantly, Tat-
CFP is immunoprecipitated when pHIVintro is present,
but the interaction is lost in the presence of RNase
(compare lane 6 and 8) demonstrating that HIV-1 RNAs
carrying both the TAR and the MS2 repeats are
required to pull down Tat-CFP.
Next, two U2OS cell lines carrying stable arrays of

either HIVexo or HIVintro were selected that show
robust trans-activation by Tat and other stimuli known
to induce transcription of integrated HIV-1 [42,43]. To
demonstrate that our strategy was able to distinguish
between the unspliced and spliced viral RNAs in the
pull-down, U2OS HIVintro and U2OS HIVexo cells
were transfected with plasmids expressing Tat-CFP and
flag-MS2nls. Cell lysates were immunoprecipitated with
anti-flag antibodies, extensively washed and used as
templates for RT-PCR using primers that are able to
distinguish unspliced (A+B, 372 bp) and spliced (A+C,
280 bp) RNAs. As shown in Figure 1C, only the spliced
RNA of HIVexo (lane 11), but not of HIVintro (lane
12), was immunoprecipitated, whereas both unspliced
RNAs could be detected (lanes 17, 18). The absence of
the spliced product in the pull-down from HIVintro is
explained by the loss of the MS2 tag after splicing and
demonstrates the specificity of the MS2-based RNA
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Figure 1 Detection and identification of HIV-1 RNA associated factors. A) Description of the HIV-1 constructs. Above an outline of the full-
length viral genome, below the two constructs used in this work: HIVexo (carrying the MS2 binding sites after the SA7 splice site) and HIVintro
(carrying the MS2 repeats in the intron). Black arrows indicate the RT-PCR primers listed in Table 2. The scheme is not drawn to scale. B)
Pulldown of HIV-1 RNA and associated Tat. 293T cells expressing the indicated constructs were lysed and immunoprecipitated with anti-flag
beads. Immunoblots with anti-GFP antibodies show Tat-CFP (lanes 1, 3, 5 7) and ECFPskl (lanes 5 and 7) expressed by the HIVintro construct. Tat
could be immunoprecipitated only when the HIV-1 RNA is present and the association is disrupted by RNase treatment (compare lanes 6 and 8).
IgH and IgL are the heavy and light chains of the immunoglobulins used in the immunoprecipitation. IP and WL stand for immunoprecipitation
and whole cell’s lysate, respectively. C) MS2-dependent pulldown of specific HIV-1 RNAs. U2OS clones and U2OS wt cells expressing Tat-CFP and
flag-MS2nls were lysed and immunoprecipitated with anti-flag beads. RNA was extracted from immunoprecipitations and the RNA reverse-
transcribed and PCR amplified with primers for b-actin mRNA (lanes 1-6), as well as with primers that differentiate spliced (lanes 7-12) and
unspliced (lanes 13-18) forms of the HIV-1 RNAs which are outlined in Figure 1A.
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affinity purification. Moreover, detection of unspliced
HIV RNA in both IPs reinforces the notion that a cer-
tain proportion of this product is maintained during
transcription of HIV-1. All together these observations
show that the MS2-based strategy can be successfully
used for the purification of factors interacting with viral
transcripts.

Identification of proteins associated with HIV-1 RNA
As we described above, we used the MS2 tagging for the
purpose of HIV-1 RNA affinity purification. Next, to
identify nuclear factors associated with viral RNA, we
proceeded as follows: U2OS HIVexo and U2OS HIVin-
tro stable cell lines together with wild type U2OS were
transfected with vectors expressing Tat-CFP and flag-
MS2nls proteins. Since we were interested in the identi-
fication of factors involved in nuclear HIV-1 RNA meta-
bolism, we subjected the cells to biochemical
fractionation for the extraction of the nucleoplasmic
fraction (NF) (Figure 2A). Indeed, the procedure
resulted in clean preparation of NF as controlled by
immunoblotting with nuclear (tubulin) and cytoplasmic
(RecQ) markers as shown in Figure 2B. The nuclear
fraction was further subjected to flag-immunoprecipita-
tion. IPs were extensively washed in the presence of
nonspecific competitors as described in Materials and
Methods, and the specificity of pulldown was assessed
by immunoblotting as shown in Figure 2C. Lastly, IPs
were subjected to mass spectrometry analysis as
described in details in Materials and Methods. We were
interested in proteins that associated with both HIVexo
and HIVintro RNAs because they represent hits
obtained from two totally independent procedures. The
combined results of two immunoprecipitations led to
the identification of 32 proteins that were specific for
the stable cell lines carrying the virus (Table 1). Indeed,
most of the identified proteins have been characterized
in RNA binding and/or regulation. Proteins such as
BAT1, FUS and hnRNPs have been already found in
large-scale proteomic analysis of the human spliceosome
[46,47]. BAT2 and CAPRIN1 were shown to associate
with pre-mRNA, although their role in pre-mRNA pro-
cessing is yet to be demonstrated [48,49]. Interestingly,
many of the identified proteins have been already shown
to be involved in various steps of HIV-1 RNA metabo-
lism. DBPA and RPL3 were shown to interact with the
TAR while ILF3 interacts with both - the TAR and the
RRE [50-52]. DDX3X, SFPQ and Upf1 were shown to
regulate Rev-dependent unspliced and partially spliced
viral transcripts while PTB was shown to regulate Rev-
independent, multiply spliced HIV-1 RNA [10,23,53,54].
MOV10 belongs to a family of Upf1-like RNA helicases,
and it has been shown to inhibit viral replication at mul-
tiple stages although its activity on viral RNA is yet to

be discovered [55,56]. Interestingly, in both screens we
identified the nuclear matrix protein MATR3 as a strong
candidate according to the number of non-redundant
peptides sequenced (the log(e) score was -44.4 for U2OS
HIVintro and -38.2 for U2OS HIVexo). MATR3 is of
particular interest because very little is known about its
nuclear function, and it has never been described in the
context of HIV-1 replication. Although MATR3 con-
tains two canonical RNA recognition motifs (RRM), its
RNA target is unknown. Intriguingly, MATR3 was
shown to interact with the SFPQ/p54nrb complex which
triggers the nuclear retention of A to I hyperedited
RNA [34]. Therefore, we were stimulated to further
investigate the possible MATR3 interaction with HIV-1
RNA.
To confirm that MATR3 specifically co-immunopreci-

pitates with viral RNA, we transfected U2OS HIVexo
and U2OS HIVintro stable cell lines and wild type
U2OS with flag-MS2nls and Tat. Cells were lysed, and
the resulting cell extract was subjected to immunopreci-
pitation with anti-flag antibodies. Resulting pulldowns
were immunoblotted with MATR3 and flag antibodies.
As shown in Figure 2D, MATR3 is detected on flag-
MS2 pulldown only in cells expressing the HIV vectors,
both HIVexo and HIVintro, and not in mock cells con-
firming that MATR3 interacts with HIV-1 RNA.
Our preliminary observations suggest that MATR3 is a

novel HIV RNA-binding factor. Therefore, we decided
to further investigate the functional meaning of this
interaction.

MATR3 is required for Rev activity
To investigate the functional role of MATR3 in HIV-1
replication, we measured the effect of RNAi-mediated
knockdown on a full-length HIV-1 molecular clone car-
rying the luciferase reporter gene in nef (pNL4.3R-E-
luc). As shown in Figure 3A, luciferase activity that
depends on the Rev-independent nef transcript was not
affected by MATR3 knockdown. However, gag expres-
sion that is dependent on Rev-mediated export of RRE
containing RNAs was greatly affected (Figure 3B). These
findings suggest that MATR3 acts at a post-transcrip-
tional level on gag mRNA.
In order to confirm that the identified cellular factor

impacts the activity of Rev, we knocked down MATR3
by siRNAs in the context of ectopic Rev expression
along with Tat and the HIV-1 derived vector vHY-
IRES-TK described in [57] and in Additional File 1. As
shown in Figure 4A, efficient knockdown of MATR3
was obtained in the presence and absence of Rev. Next
we examined the levels of unspliced viral RNA by RT-
PCR. As shown in Figure 4B, in the presence of Rev,
the level of unspliced viral RNA was increased due to
Rev activity (compare lane 3 and 4). Interestingly, the
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Figure 2 Immunoprecipitation of HIV-1 RNA from nucleoplasmic fractions. A) Biochemical fractionation for the proteomic analysis. Nuclear
extraction scheme showing the various phases of the protocol used to produce the nucleoplasmic fraction. B) Control of nuclear extraction in
U2OS cells. The fractions obtained by the protocol outlined in Figure 2A were loaded on a gel for immunoblotting against a-tubulin (upper
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Rev-mediated increase of unspliced HIV-1 pre-mRNA
over spliced RNA was less evident when MATR3 was
depleted (Figure 4B, compare lanes 1 and 2). Quantita-
tive real-time RT-PCR (qRT-PCR) confirmed that,
while depletion of MATR3 did not affect the steady-
state levels of unspliced RNAs, it strongly affected its
Rev-mediated increase (Figure 4C). We also demon-
strated that translation of the gag RNA, which depends
on Rev-mediated export of the corresponding RRE-

containing RNA, was impaired by MATR3 knockdown
(Figure 4D). To rule out any off-target effect of
siRNA-mediated knockdown of MATR3 we also used a
shRNA targeted to a different site. As described in
Additional File 1, we observed the same phenotype on
Gag expression.
Next, we overexpressed MATR3 in cells transfected

with vHY-IRES-TK, Tat, and Rev-EGFP; and we
checked the levels of unspliced viral RNA by qRT-PCR.

Table 1 Proteins identified by mass spectrometry.

Gene ID Proposed function(s) Entrez n. &
Ref.

Pre mRNA/mRNA binding proteins [41,46,47]

BAT1 RNA helicase (UAP56) also involved in RNA export 7919

FUS Oncogene TLS (Translocated in liposarcoma protein) is a multifunctional RNA-binding protein factor 2521

HNRPA3 heterogeneous nuclear ribonucleoprotein 220988

HNRPDP heterogeneous nuclear ribonucleoprotein (hnRNP D0) 8252

HNRPF heterogeneous nuclear ribonucleoprotein 3185

HNRPM heterogeneous nuclear ribonucleoprotein 4670

HNRPR heterogeneous nuclear ribonucleoprotein 10236

VIM Vimentin, structural constituent of cytoskeleton 7431

Other pre-mRNA/mRNA associated proteins

BAT2 May play a role in the regulation of pre-mRNA splicing 7916 [48]

C14orf166 hCLE/CGI-99 is a mRNA transcription modulator 51637[77]

CAPRIN1 GPI-anchored membrane protein 1/p137 associates with human pre-mRNA cleavage factor IIm 4076 [49,78]

GAPDH Glyceraldehyde-3-phosphate dehydrogenase, also shown to bind ssDNA/RNA and to have a role in RNAPII histone
genes activation

2597 [79,80]

Involved in HIV RNA binding/regulation

DBPA YB-1 interacts with TAR and Tat (*) 8531 [50]

DDX3X Involved in Rev-mediated non-terminally spliced RNA export (*) 1654 [10]

EEF1A1 Involved in RNA-dependent binding of Gag 1915 [81]

ILF3 NF90 binds HIV-1 TAR and RRE (*) 3609 [51,52]

MOV10 RNA helicase that inhibits HIV-1 replication 4343 [55,56]

PTBP1 PTB has been involved in nuclear retention of multi-spliced HIV mRNAs in the nucleus of resting T cells (*) 5725 [82]

TUBA1B HIV-1 Tat binds tubulin (*) 10376 [83]

RPL3 Also described as HIV-1 TAR RNA-binding protein B (TARBP-b) 6122 [84]

SFPQ PSF is involved in Rev-mediated export of HIV-1 RNA (*) 6421 [53]

UPF1 Upframeshif protein 1 RNA helicase. Part of a post-splicing multiprotein complex. 5976 [54,85]

Other

CFL1 It is the major component of nuclear and cytoplasmic actin rods. 1072

EIF4A1 ATP-dependent RNA helicase; eIF4F complex subunit involved in cap recognition and is required for mRNA binding to
ribosome.

1973

HIST1H1A histone 1, H1a 3024

H1FX histone 1 family, H1 member X 8971

PRKDC DNA-dependent protein kinase (DNA-PKcs) involved in dsDNA break repair 5591

RIF1 Associated with aberrant telomers and dsDNA breaks 55183

SCYL2 Putative kinase in yeast 55681

SPIN1 Spindlin 1 belongs to the SPIN/STSY family 10927

(*) also identified as pre-mRNA/mRNA binding proteins [41,46,47].
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Figure 3 MATR3 is a post-transcriptional cofactor of HIV-1. A) MATR3 knockdown does not affect the luciferase activity. HeLa cells were
transfected with the indicated siRNAs. After 48 hours siRNA-treated cells were transfected with the pNL4.3R-E-luc HIV-1 molecular clone and
with pCMV-Renilla and harvested 24 hours later for luciferase assays. Relative Luc/RL expression was normalized to protein levels measured by
Bradford assay. The results of three independent experiments are shown ± SD. B) MATR3 knockdown leads to decrease of the Gag expression
from pNL4.3R-E-luc HIV-1 molecular clone. HeLa cells were transfected with the siRNA targeting MATR3 (siMATR3) or with a control siRNA
(siCTRL). After 48 hours siRNA-treated cells were transfected with pNL4.3R-E-luc and harvested 24 hours later for immunobloting. Tubulin is the
protein loading control.
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set as 1. The results of three independent experiments are shown ± SD. The inhibition was significant (p = 0.00091). F) Quantitative analysis of
spliced HIV-1 RNA levels modulated by MATR3 in the nucleus and the cytoplasm. The experiment was conducted for spliced (S) HIV-1 RNA as
described above (Figure 4E).
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As shown in Figure 5A, Rev alone increased the amount
of unspliced RNA as expected. However, overexpression
of MATR3 led to a greater increase (6-folds) in the pre-
sence of Rev (Figure 5A). Consistently, translation of the
gag RNA from the HIV-1 derived vector as shown by

p17 immunoblotting was increased in the presence of
transfected MATR3 (Figure 5B).
The above findings demonstrate that MATR3 impacts

viral unspliced RNA and Rev-activity. However, MATR3
could act either by modulating the levels of viral RNA
in the nucleus or by affecting Rev-mediated nuclear
export. To address these points, we fractionated the
cells and measured the levels of viral transcripts in the
nucleus and in the cytoplasm. As shown in Figure 4E
and 4F, the distribution of spliced RNA remained
unchanged. To the contrary, only cytoplasmic Rev-
dependent unspliced RNA significantly decreased when
MATR3 was depleted. These results suggest that
MATR3 selectively acts on the Rev-dependent nuclear
to cytoplasm export of unspliced viral RNA.

Interaction of MATR3 with Rev
Finally, we sought to investigate the possible interaction
between MATR3 and the Rev viral protein. To this end,
we transfected 293T cells with Rev-EGFP, vHY-IRES-TK
and Tat. Next, we immunoprecipitated endogenous
MATR3 and found that it interacted with Rev (Figure
6A). However, the interaction appears to be RNA
dependent, since the levels of Rev decreased in the pre-
sence of nuclease treatment. To discern whether or not
the RRE-containing viral RNA was necessary and suffi-
cient for the interaction with MATR3, we tested an RRE
minus HIV-1 clone. To this end, we repeated the
MATR3 pulldown of Rev from cells transfected either
with HIV-1 vectors carrying the RRE like vHY-IRES-TK
and v653RSN, the original lentiviral vector from where
vHY-IRES-TK was derived [57,58]. An identical vector
lacking the RRE was also used (v653SN, Additional
File 1). As shown in Figure 6B, in the absence of RRE
the amount of Rev that could be recovered in the pull-
down was lower than in the two IPs where the RRE was
present.
Taken together, our data demonstrated that MATR3,

Rev and RRE-containing HIV-1 RNA are components of
the same ribonucleoprotein complex.

Discussion
Viruses are dependent on cellular partners to achieve
full replication [59]. In recent years, several excellent
studies have exploited unbiased screens to identify host
cofactors that contribute to the HIV-1 life cycle. Genetic
screens, such as transcriptome and RNAi studies
[60-65], as well as interactome analysis based on yeast
two-hybrid systems [66] or on proteomics [67-70] have
identified essential cellular cofactors of HIV-1 infection.
In this study, we have developed a novel proteomic

approach for the unbiased identification of proteins that
are involved in the processing of HIV-1 RNA. The
novelty of our approach relies on identifying host factors

A 

MATR3 

p17*    

tubulin 

+ - 

mock MATR3 

+ - Rev 

B 

Figure 5 MATR3 overexpression promotes Rev activity. A)
Quantitative analysis of unspliced HIV-1 RNA levels modulated by
transfected MATR3. Unspliced (US) viral RNA expression in 293T cells
was assayed after transfection with Flag-MATR3, vHY-IRES-TK, Tat and
Rev-EGFP. Unspliced RNA levels were analyzed by quantitative real-
time PCR and data normalized to b-mRNA expression. Data are
presented as fold change, whereby 293T cells transfected with vHY-
IRES-TK and Tat in the absence of Rev were set as 1. The results of
three independent experiments are shown ± SD. The increase was
significant (p = 0.01931). B) Transfected MATR3 upregulates Rev-
dependent Gag translation. Western blot analysis of protein extracts
from 293T cells expressing Flag-MATR3, vHY-IRES-TK, Tat and Rev-EGFP.
p17* is the product of the truncated gag gene of the vHY-IRES-
TKvector. Tubulin is the protein loading control
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Input      

IP 

Rev + + + + 
nuclease       + + 

MATR3 

Rev-GFP 

MATR3 

Rev-GFP 

p17* 

β-actin 

input IP 

B 

A 

Figure 6 MATR3 interaction with Rev requires HIV-1 RNA. A) Whole cell lysates from 293T cells expressing vHY-IRES-TK and Tat with or
without Rev-EGFP were subjected to immunoprecipitation with anti-MATR3 antibodies or with anti-IgG (mock). The IP were subjected to
nuclease treatment and the proteins were detected by immunoblotting. B) Whole cell lysates from 293T cells expressing either vHY-IRES-TK, or
v653RSN or v653SN together with Tat and Rev-EGFP were subjected to immunoprecipitation with anti-MATR3 antibodies. Immunoblots from
whole cell extracts are shown on the left (input). Endogenous b-actin was used as loading control. The immunoblot for p17* shows lack of Gag
expression for the RRE deficient v653SN construct (bottom panel). Immunoprecipitations are shown on the right (IP).
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that assemble specifically on viral RNA in the context of
viral transcription in the nucleus. To this end, we took
advantage of the MS2 system where the RNA is tagged
with binding sites for the MS2 bacteriophage coat pro-
tein [37,45]. The MS2-based method is widely used to
visualize RNA by tagging the MS2 coat protein with
GFP [42,43]. We exploited this system to pull down
HIV-1 RNA together with associated proteins from
nuclear extracts via a flag-tagged MS2 instead. Affinity
purification of viral transcripts via flag-MS2, coupled to
mass spectrometry, revealed several known RNA bind-
ing factors involved at various steps of cellular and/or
HIV-1 RNA regulation (Table 1). Factors such as
DDX3X, SFPQ, Upf1 and the Upf-1 like helicase -
MOV10 have been characterized as regulators of HIV-1
RNA metabolism. DDX3X plays a role in Rev-dependent
export of viral transcripts [10]. PSF, also known as spli-
cing factor, proline- and glutamine-rich (SFPQ), binds
specifically to the instability elements (INS) present in
the HIV-1 genome [53]. Upf1, a key player in nonsense-
mediated decay (NMD) increases stability of intron-con-
taining HIV-1 transcripts [54]. MOV10, a putative
RNA-helicase and component of P-bodies has been
identified recently as a potent inhibitor of HIV-1 repli-
cation [56,71].
We focused our attention on a nuclear matrix compo-

nent Matrin3 (MATR3) that co-purified with HIV-1
RNA. Knockdown of MATR3 did not affect HIV-1 tran-
scription, but decreased Gag protein levels pointing to
its involvement in a post-transcriptional step (Figure 3).
The Gag protein is expressed from a subset of RRE-con-
taining viral RNAs that are bound by the viral Rev pro-
tein and exported to the cytoplasm for gene expression.
Hence, MATR3 may act as a Rev cofactor. Indeed,
depletion or overexpression of MATR3 affected the total
levels of unspliced viral transcripts and the amount of
Gag protein (Figure 4 and 5). Interestingly, the nuclear
levels of unspliced RNAs in the presence of Rev were
not affected, while the cytoplasmic levels were decreased
(Figure 4E). Finally we investigated the interaction of
MATR3 with Rev. Our data indicate that endogenous
MATR3 co-eluted with the Rev protein, but the interac-
tion was disrupted by nuclease treatment and required
the RRE element (Figure 6).
Our results are in keeping with a model where RRE-

containing viral transcripts are bound by MATR3 which
directs them to nuclear export in the presence of Rev.
MATR3 has been characterized as a component of the
nuclear matrix structure and has also been suggested to
play a role in nuclear retention of hyperedited RNA
with the assistance of the PSF/p54nrb complex [34].
Interestingly, PSF, that is able to associate with HIV-1
RNA [53], has also been identified in our proteomic
screen (Table 1), and both PSF and MATR3 have been

identified in a proteomic screen of the nuclear pore
[72]. We can envisage that nuclear retention and regu-
lated Rev-mediated nuclear export of RRE-containing
pre-mRNA may be regulated by these cellular factors.
Alternatively, MATR3 may act in concert with the RNA
helicase DDX3X (Table 1) involved in Rev/CRM1
mediated export of RRE containing transcripts [10].
Understanding of the mechanistic aspects of this process
is needed to fully clarify MATR3 involvement in Rev-
mediated export of viral transcripts.

Materials and methods
Cells and plasmids
Cells were cultivated at 37°C in Dulbecco’s Modified
Eagle Medium (DMEM) containing 10% FCS and anti-
biotics. U2OS HIV_Exo_24 × MS2 cells were obtained as
described [42]. U2OS HIV_Intro_24 × MS2 cells carry
the MS2 repeats in the intron and were obtained by the
same protocol [19,44]. Plasmids encoding tagged versions
of HIV-1 Tat and MS2 were previously described [42,73].
Plasmid MATR3-GFP was constructed by PCR amplifica-
tion of the full-length cDNA (Open Biosystems cat. n.
MHS1010-73974) and sub-cloning into pEGFP-N1
(Clontech). pCMV-Flag-MATR3 was obtained from
Yosef Shiloh and Maayan Salton (Tel Aviv University,
Israel). The HIV-1 molecular clone pNL4.3R-E-luc was
kindly provided by Nathaniel Landau (New York Univer-
sity, USA). Plasmid Rev-EGFP was obtained from Dirk
Daelemans (Rega Institute, Katholieke Universiteit Leu-
ven, Belgium). Rev-DsRed was described in [44]. Lenti-
viral vectors vHY-IRES-TK, v653RSN and v653SN where
described previously [57,58].

Antibodies, western blots and immunoprecipitations
Immunoblots were performed as described before [74]
with the following antibodies: MATR3 (Aviva Systems
Biology, ARP40922_T100, 1:1000) or a gift from Yosef
Shiloh and Maayan Salton (Tel Aviv University, Israel,
1:10000); p17 (NIH AIDS Reference Reagents Program,
1:1000); GFP (Roche, 11814460001, 1:1000); flag (Sigma,
F1804, 1:1000); a-tubulin (Sigma, T5168, 1:10000);
RecQL-1 (H-110) (Santa Cruz, sc-25547, 1:1000); b-
actin-HRP (Sigma, A3854, 1:50000). Immunoprecipita-
tions (IPs) were performed using the MATR3 antibody
(Abcam, 70336) as described previously [74]. Briefly,
293T cells were lysed with RIPA buffer (50 mM Tris pH
7.4, 150 mM NaCl, 1% NP-40, 0.1% SDS, 1.5 mM
MgCl2) and the cellular extracts were incubated for 4
hours with the MATR3 antibody coupled to A/G PLUS
agarose beads (Santa Cruz, sc-2003) at 4°C under rota-
tion. IPs were spun down and washed six times in RIPA
buffer supplemented with 0.1 mg/ml dextran and 0.2
mg/ml heparin. Next, IPs were incubated with 40U of
benzonase (Sigma, E1014) for 45 minutes at 4ºC,
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subsequently washed four times with RIPA buffer and
eluted with 2x Laemmli buffer for SDS-PAGE.

Preparation of nuclear extracts, RNA pull-down, mass
spectrometry
To prepare nuclear extracts, U2OS cells were washed
once with cold PBS and resuspended in hypotonic buf-
fer A: 20 mM Tris HCl [pH 7.5], 10 mM NaCl, 3 mM
MgCl2, 10% glycerol, 10 mM Ribonucleoside-Vanadyl
Complex (RVC, Sigma) and the protease inhibitors
cocktail (Roche). After 1 minute NP-40 was added at
0.1% v/v final concentration for 5 minutes. Nuclei
were collected by low speed centrifugation at 4°C and
resuspended in nuclear extraction buffer B: 20 mM
Tris-HCl pH 7.5, 400 mM NaCl, 3 mM MgCl2, 20%
glycerol additioned with RNase inhibitor RVC and the
protease inhibitors cocktail as described above. After
30 minutes on ice, nuclei were subjected to three
cycles of snap-freeze/thaw and insoluble proteins were
removed from the nuclear extract by high-speed cen-
trifugation at 4°C.
Nuclear extracts were adjusted to 150 mM NaCl and

0.1 mg/ml tRNA and immunoprecipitated with agarose
anti-flag M2 beads (Sigma) for 3 hours at 4°C and
washed eight times in wash buffer (20 mM Tris HCl
pH 7.5, 300 mM NaCl, 3 mM MgCl2, 0.5% NP-40, 0.1
mg/ml dextran, 0.2 mg/ml heparin). Bead-bound pro-
teins were processed for mass spectrometry analysis as
described by Bish and Myers [75]. Briefly, IPs were
washed for additional three times in 20 mM diammo-
nium phosphate pH 8.0, and then incubated with 50
ng sequencing grade modified trypsin (Promega) for 8
hours at 37°C. The supernatant was removed from the
beads, reduced by boiling for 5 minutes with 10 mM
Tris(2-carboxyethyl)phosphine (Pierce), and alkylated
with 15 mM iodoacetamide for 1 hour in the dark. An
equal volume of 5% formic acid was added prior to
sample cleanup with C18 ZipTips (Millipore). Samples
were analyzed by LC-MS/MS using an LTQ mass spec-
trometer (Thermo Electron) attached to a MicroTech
HPLC. LC-MS/MS data in the form of .RAW files
were converted to .mzXML files by ReadW (version
1.6), and then searched against human protein data-
bases by the Global Proteome Machine. A protein
identification was considered valid when at least two
non-redundant peptides from the same protein have
been assigned a statistically meaningful log(e) score
less than or equal to -3.0.

RNA pulldown and RT-PCR, quantitative real-time PCR,
fractionation
U2OS stable cell lines expressing Tat and flag-MS2nls
were washed in cold PBS and lysed in RIPA buffer (50
mM Tris-Cl; pH 7.5, 1% NP-40, 0.05% SDS, 150 mM

NaCl) plus the RNase inhibitor (Ambion) and a protease
inhibitor cocktail (Roche). After 15 minutes at 4ºC the
monolayer was scraped off and centrifuged at high
speed. An aliquot of the resulting total extracts was
saved for RNA extraction and the remaining lysates
were incubated with anti-flag M2 beads (Sigma) in the
presence of tRNA (0.1 mg/ml) with rotation for 3 hours.
The beads were collected at 4000 rpm and were washed
six times in RIPA buffer. The immunoprecipitated RNA
and the total RNA were extracted using TRIzol accord-
ing to the manufacturer’s protocol (Invitrogen). The
RNA was used as a template to synthesize cDNA using
random hexamers and MMLV reverse transcriptase
(Invitrogen) according to the manufacturer’s protocol.
For quantitative real-time PCR, total RNA was

extracted from 293T cells using TRIzol according to the
manufacturer’s protocol (Invitrogen).
Nuclear and cytoplasmic fractions were obtained by

the following protocol. 293T cells were washed with
cold PBS and resuspended in hypotonic buffer A: 20
mM Tris HCl [pH 7.5], 10 mM NaCl, 3 mM MgCl2,
10% glycerol and the protease inhibitors cocktail
(Roche). After 1 minute NP-40 was added at 0.1% v/v
final concentration for 5 minutes and cytoplasmic frac-
tion was collected by centrifugation at 4000 rpm for 5
min. at +4°C. The pellet was washed with buffer A and
the nuclei were collected by centrifugation. The cyto-
plasmic fraction and nuclei were subjected to RNA
extraction using TRIzol according to the manufacturer’s
protocol (Invitrogen). Purity of fractions was assayed by
Western blot of cytoplasmic and nuclear proteins.
The RNA was used as a template to synthesize cDNA

using random hexamers and MMLV reverse transcrip-
tase (Invitrogen) according to the manufacturer’s proto-
col. Amplification of the cDNA was conducted in the
presence of iQTM SYBR Green (Bio-Rad) and moni-
tored on C1000 Thermal Cycler (Bio-Rad). Specific pri-
mers are shown in Table 2. Viral RNA abundance is
normalized to b-actin mRNA expression and shown as
fold change in comparison with control samples. Results
were expressed as mean plus or minus SD. Significant
expression changes are represented by P < 0.05. The
two-tailed student-T test confirmed significant expres-
sion changes in the results.

Table 2 Primers for RT-PCR

Name Sequence 5’ > 3’

A (nuc1b-177) CGAGATCCGTTCACTAATCGAATG

B GGATTAACTGCGAATCGTTCTAGC

C CGAGATCCGTTCACTAATCGAATG

BA1 (b-actin) CATGTGCAAGGCCGGCTTCG

BA4 (b-actin) GAAGGTGTGGTGCCAGATTT
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siRNA- mediated knockdown of MATR3
Pools of siRNAs were obtained from Dharmacon:
MATR3 siGENOME SmartPool (UAGAUGAACUGA-
GUCGUUA, GACCAGGCCAGUAACAUUU, ACCCA
GUGCUUGAUUAUGA, CCAGUGAGAGUUCAUUU
AU), siGENOME Non-Targeting siRNA Pool #1. Either
HeLa cells or 293T cells were transfected with siRNAs
at the concentration of 100 nM and with HiPerFect
Transfection Reagent (Qiagen) according to manufac-
turer’s instructions and previous protocols [76]. After 48
hours the efficiency of the knockdown was analyzed at
the protein level by Western blot.
A short-hairpin shRNA targeted to MATR3 (Open

Biosystems individual clone ID: TRCN0000074905)
delivered by a lentiviral vector (pLKO.1), or a control
targeting luciferase (courtesy of Dr. Ramiro Mendoza-
Maldonado), were produced in 293T cells by cotransfec-
tion with the packaging plasmids psPAX2 and pMD2.G
using 5 μg/ml polybrene. Supernatants were used to
transduce 293T cells. After 48 hours cells were assayed
for MATR3 expression and transfected.

Luciferase assay
HeLa cells, treated with siRNA as described above, were
transfected with the pNL4.3R-E-luc HIV-1 molecular
clone along with the pCMV-Renilla vector. Twenty-four
hours after transfection, the cells were harvested and
lysed in passive lysis buffer (Promega) and the levels of
luciferase activity were measured by the Dual-Lucifer-
ase-Reporter assay (Promega) as directed by manufac-
turers. For normalization, total protein concentration in
each extract was determined with a Bio-Rad protein
assay kit.

Additional material

Additional file 1: Supplementary information on the
characterization of the vectors, on their Rev-responsiveness and on
shRNA-mediated knockdown of MATR3.
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