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Abstract

We have studied the effects associated with two single amino acid substitution mutations in HIV-|
capsid (CA), the E98A and E187G. Both amino acids are well conserved among all major HIV-I
subtypes. HIV-I infectivity is critically dependent on proper CA cone formation and mutations in
CA are lethal when they inhibit CA assembly by destabilizing the intra and/or inter molecular CA
contacts, which ultimately abrogate viral replication. Glu98, which is located on a surface of a
flexible cyclophilin A binding loop is not involved in any intra-molecular contacts with other CA
residues. In contrast, Glul87 has extensive intra-molecular contacts with eight other CA residues.
Additionally, Glul87 has been shown to form a salt-bridge with Argl8 of another N-terminal CA
monomer in a N-C dimer. However, despite proper virus release, glycoprotein incorporation and
Gag processing, electron microscopy analysis revealed that, in contrast to the EI187G mutant, only
the E98A particles had aberrant core morphology that resulted in loss of infectivity.

Findings

The HIV-1 capsid protein (CA, p24) is the building block
of the conical core structure of the virus. It is initially pro-
duced as a part of the Gag precursor (p55) and during or
concomitant with the virus release, p55 is cleaved sequen-
tially into the matrix (MA; p17), capsid, nucleocapsid
(NG; p7) and p6 proteins [1,2]. Capsid protein consists of
two independently folded globular domains, the N-and
C-terminal domain [3] connected through a short flexible
hinge region.

Several studies have shown that mutations within the gag
gene disrupt virus replication or infectivity [4-8] and the
infectivity of HIV-1 is critically dependent on proper CA

assembly and disassembly following cell entry [9].
Although much of the assembly properties of HIV-1 CA
were based on x-ray crystallographic data, NMR and in
vitro assembly models, the importance of major homol-
ogy region [10], the binding site for cyclophilin A (CypA)
[11,12], and the CA dimer interfaces [13,14] are some of
the functions in CA that have been characterised using
mutational analysis.

Most of amino acid sequences in the CypA-binding loop
of HIV-1 CA have been investigated using both genetic
and structural studies [12,15-17]. However, Glu98 which
is well conserved [18] among all major HIV-1 subtypes
was not previously investigated. Glu98 is located on a sur-
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face C-terminal to the CypA-binding site and has no intra-
molecular contacts with other residues except for a single
hydrogen bond with Argl100 [19]. In sharp contrast,
Glu187 has extensive contacts with eight other CA resi-
dues (Fig 1A and 1B).

In this study, we investigated the effects associated with
two single amino acid substitution mutations, the E98A
and E187G respectively, having quite opposite intra
molecular CA contacts with other CA residues. The point
mutations were engineered by site-directed mutagenesis
and as the identity of each mutant was confirmed by
sequencing, we assayed the viral protein expression using
HeLa-tat and 293T cells [see Additional file 1 for details
on Materials & Methods]. We found that the Western blot
banding pattern of both mutants were identical to that of
wild-type pNL4-3 transfected cells (Fig. 1C). Thus, the
mutations did not appear to influence the intra-cellular
processing of Gag precursor. We determined by ELISA that
cells transfected with the E98A mutant released approxi-
mately 15% higher p24 than cells transfected with the
control vector (Fig. 2A), indicating that the mutations had
no substantial effect on particle release. To determine the
viral protein contents of both mutant virions, viral super-
natants were concentrated and separated on SDS-PAGE
(Fig. 1E and 1F). The samples were then analyzed by
immunoblotting with anti-glycoprotein (Fig. 1E) and a
pool of HIV positive human sera (Fig. 1F). We observed
that virion release was un-affected in both E98A and
E187G mutants, as judged by the presence of the interme-
diate and fully processed Gag proteins [1,2].

However, in contrast to the E187G and wild-type, we
found that the E98A virions were non-infectious in per-
missive CD4 positive H9 cells (Fig. 2B), despite being
competent for particle assembly, normal processing of
Gag and incorporating viral envelope glycoproteins. Sim-
ilar results were also seen with infected MT4 cells [see
Additional file 2]. The fact that WB analysis of the E98A
mutant did not show any defect in proteolytic processing
of Gag indicates that the mutation may affect the later
stage of virus replication, possibly post-processing. Fur-
thermore, the level of HIV-1 glycoprotein incorporated
into the budding virus particle was similar to the wild-
type control suggesting that the mutation had no effect at
the entry stage of the virus replication cycle. To elaborate
this notion, the ability of mutant E98A virus binding and
internalization was also determined on CD4+TZM-bl cells
[20], essentially as described elsewhere [21]. Briefly, cells
were pre-incubated at 4°C for 1 h and exposed to equal
amounts of DNasel treated E98A or wild-type virus. Fol-
lowing binding at 4°C or internalization at 37°C, cells
were treated or not with trypsin and the amount of cell-
associated p24 was measured. We observed that mutant
E98A virions could bind and internalize into the target
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cells, indicating that there is no defect at this level of the
virus replication cycle (Fig. 2C). Similar results were also
seen when the intra-cellular level of viral RNAs were meas-
ured using nested RT-PCR (Fig. 2D). In this experiment,
TZM-bl cells were seeded and infected as above with two-
fold virus dilutions and following internalization, cells
were trypsinized, washed and total RNAs were extracted.
Equal amounts of RNA were then subjected to nested RT-
PCR using specific primers that amplified a 593 bp frag-
ment of the p17 viral RNA. Consequently, in order to
determine the exact step at which the viral replication
cycle is affected, we used a PCR based system and ana-
lyzed the early and late gene replication steps of proviral
DNA synthesis in vivo in infected cells (Fig. 3A). Infection
of H9 cells was performed by addition of cell-free DNasel-
treated virus produced 3 days after transfection of 293T
cells. Viral DNA production by E187G mutant virion was
at a level similar to that for wild-type pNL4-3. In contrast,
we found that viral DNA synthesis in cells infected with
E98A virus was completely absent, suggesting that the
E98A mutation interferes with an early stage in the viral
replication cycle.

Surprisingly, although proviral DNAs in H9 cells infected
with E98A virus were not detected, a low level of Tat-
induced luciferase activity was detected in a single-cell-
cycle infectivity assay with TZM-bl cells (Fig. 3B). Given
the fact that Tat is critical for the HIV-1 gene expression
and reverse transcription [22,23], we investigated whether
a soluble Tat protein released in to the culture supernatant
was involved in this assay. To address this issue, possible
soluble Tat proteins in the supernatant of transfected
HelLa-tat cells was immunoprecipitated using monoclonal
antibody against Tat and then tested for the infectivity
(Fig. 3C). However, we were unable to inhibit the subtle
amount of Tat-induced luciferase activity seen in these
cells and subsequently explain this activity. A possible rea-
son may be that Tat is packaged into HIV-1 particles
through binding to TAR element [24,25], although the
presence of Tat in virion has never been reported satisfac-
torily. Consistent with a previous report [26], we were also
unable to detect Tat proteins in Viraffinity concentrated
viral lysate using WB analysis with Tat-specific mono-
clonal antibody.

Since the E98A mutation is located C-terminal to the
CypA-binding site and CypA has been suggested to dis-
rupt CA-CA interactions following cell entry of the virus,
we tested whether the reason for the diminished viral rep-
lication may be due to the lack of CypA incorporation in
to the budding particle. However, analysis of virion-asso-
ciated proteins revealed similar levels of CypA incorpora-
tion as in the control virus (Fig. 3D).
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Structural view and Western blot analysis of capsid mutants. A close view of the structure of the cyclophilin A binding loop in
the N-terminal (A) and the position of EI87 in the C-terminal (B) HIV-1CA domains. The two residues in this study, E98 and
E187, are being explicitly highlighted. The figure was produced with PyMOL [27] and the structure was obtained from the Pro-
tein Data Bank (cf PDB entry 1E6] [3]). (C to F) Western blot analysis of mutant and wild-type pNL4-3 transfected cells (C and
D), and viral lysates (E and F). Hela-tat cells were transfected as indicated with 2 ng of proviral DNAs using the non-liposomal
FuGENE transfection reagent (Roche) as recommended by the manufacturer. Cells were also co-transfected with mutant and
wild-type pNL4-3 as indicated. Forty-eight to 72 hrs post-transfection, cells were harvested and proteins were separated by
SDS-PAGE in 4-12% gels and transferred to a nitrocellulose membrane. The membranes were initially probed with HIV+
patient serum (C and F) and were then reprobed with rabbit anti-calnexin antibody (D) or mouse monoclonal anti-V3 antibody
(E) using horseradish peroxidase-conjugated secondary antibodies raised against mouse (DAKO, 1:4000), human (Pierce,
1:20,000), or rabbit (Sigma, 1:4,000) IgG. The protein bands were visualized by chemiluminescence. The positions of specific
viral proteins are indicated to the right. Numbers to the left depict positions of molecular mass markers in kDa.
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Virus release and internalization studies. p24-ELISA of transfected 293T cell (A) and infected H9 cell (B) culture supernatants.
(A) 293T cells were transfected or co-transfected with mutant and wild-type pNL4-3 (2 ug) as indicated using the non-lipo-
somal FUGENE transfection reagent (Roche) as recommended by the manufacturer. Culture supernatants were then assayed
for p24 antigen contents 72 hrs post-transfection using an in-house p24 antigen ELISA [28]. Similar results were also obtained
with transfected Hela-tat cells. Virus stocks were then prepared from cleared and filtered culture supernatants (pre-cleared by
centrifugation at 1,200 rpm for 7 min and filtered through a 0.45-pum-pore-size membrane) treated with DNase | (Roche) at 20
pg/ml final concentration at 37°C for | h. Aliquots in 300-pl fractions of the virus stocks were saved at -80°C until needed. (B)
H9 cells (2 x 105 cells) were infected with the X4 NL4-3 strain of mutant or wild type HIV-1 stocks using 200 ng of p24 antigen
per well in 24-well plates. Three hours after infection, unbound viruses were removed by centrifugation, washed and resus-
pended in | ml complete RPMI medium per well. The infections were performed in triplicates and supernatants were collected
at days 1, 4, 8, 12 and 16 post-infection and tested for p24 antigen contents by p24-ELISA. NI, non-infected control. (C) For
virus binding and internalization assay, monolayered TZM-bl cells were seeded one day before infection and following day,
medium was removed and cells were inoculated with equal amounts (400 ng of p24 antigen) of mutant or wild type NL4-3
virus stocks (treated with DNase I) with 20 pug/ml DEAE-dextran (in a total volume of 300 pl to 60,000 cells per well in 12-well
plates). After adsorption period of 2 hrs, input viruses were removed and cells were treated with trypsin (+TRYP) or not (-
TRYP) and the amount of cell associated p24 was measured using the p24-ELISA. (D) TZM-bl cells were also infected as
described above with the amount virus indicated and after adsorption period of 2 hrs, input viruses were removed and cells
were fed with | ml of complete DMEM with 5 uM indinavir and cultured for 24 hrs. Equal amounts of total RNA isolated from
E98A infected TZM-bl cells were subjected to nested RT-PCR using specific primers that amplified a 593 bp fragment of the
p17 viral RNA. The outer primer pair 5'-GCA GTG GCG CCC GAA CAG and 5'-TTCTGA TAA TGC TGA AAA CAT GGG
TAT and inner primer pair 5'-CTC TCG ACG CAG GAC TC and 5'-ACC CAT GCA TTT AAA GTT CTA G was used. As an
internal control, the human B-globin RNA was amplified using the primers described elsewhere [29].
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Viral infectivity assay. (A) Detection of proviral DNA. H9 cells were infected as above and total cellular DNA was prepared 16
days post-infection using Qiagen's DNA isolation kit and analyzed by PCR using a set of primers specific for negative strand
strong-stop DNA and a conserved region of the gag, described previously [30, 31]. Early gene products were amplified using
the forward primer Ra 5'-TCT CTG GTT AGA CCA GAT CTG-3' (459—-479) and the reverse primer U5a 5'-GTC TGA GGG
ATC TCT AGT TAC-3' (584-604). Late gene products representing a conserved region of the HIV-1 gag was amplified with
the forward primer SK-38 5'-ATC CAC CTA TCC CAG TAG GAG AAA T-3' (1090—1117) and the reverse primer SK-39 5'-
TTT GGT CCT TGT CTT ATG TCC AGA ATG C-3' (1177-1204) that amplified a | 15-bp fragment. We also examined the
viral cDNA production at 16 hrs post-infection and been able to detect in all cells infected with mutant and wild-type virions
(data not shown). To normalize for the quantity of total cellular DNA present in each sample, human B-globin DNA was ampli-
fied [29]. (B) Single cell cycle infectivity of mutant and wild-type virus particles on TZM-bl reporter cell lines. Cells (2 x 104)
were infected as described above with equal amounts (25 ng p24 antigen) of mutant and wild-type virus or chimeric virus stock
prepared by co-transfection of mutant and wild-type pNL4-3 at a ratio of |:1, 2:1, and 4:1. Infected cells were then cultured in
the presence of 5 uM indinavir. Twenty-four hours post-infection, cells were harvested in 200 pl Glo lysis buffer (Promega) and
assayed for luciferase activity with the luciferase assay kit obtained from Promega. RLU, relative light unit. (C) TZM-bl cells (8
x 10%) were infected as described above with 400 ng of wild-type NL4-3 virus or with E98A virus that was first immunoprecip-
itated with anti-Tat monoclonal antibody (indicated with IP 400). Cells were also infected with E98A virus stock that had been
two-fold serially diluted. After 48 hrs, culture supernatants were removed and cells were assayed for luciferase activity. (D)
Detection of virion associated cyclophilin A (CypA) by Western blot analysis. Cell free culture supernatants from 293T cells
transfected with mutant and wild-type pNL4-3 were equilibrated for p24 antigen concentration and equal amounts of virus was
precipitated with Viraffinity (CPG Inc) as recommended by the manufacturer. Culture supernatants were mixed (4:1) with
Viraffinity and the mixture was incubated at room temperature for 5 min and centrifuged at 1000 X g for 10 min. The viral pel-
lets were washed and dissolved in |x RIPA buffer [50 mM Tris/HCI (pH 7.4), 150 mM NaCl, 1% Triton X-100, 1% sodium
deoxycholate and 0.1% SDS, supplemented with a complete protease inhibitor cocktail from Roche]. The viral proteins were
finally separated by SDS-PAGE, transferred onto a nitrocellulose membrane and probed with rabbit anti-CypA antibody (Calbi-
ochem, 1:2,000) and as secondary antibody horseradish peroxidase-conjugated anti-rabbit IgG. Rec CypA, recombinant CypA;
NT, non-transfected control.
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We then examined the morphological structures of these
virions and correlated the results to their relative infectiv-
ity (Fig. 4). EM images of the three types of particles (NL4-
3, E98A, and E187G) were categorized by the presence of
three different core structures: aberrant, immature, and
mature dense conical structure. Detail morphological
analysis was also performed in order to depict different
categories of virus morphology [see Additional file 3].
Although small percentage of virus with aberrant core was
present, the majority of EM images of NL4-3 and E187G
showed a mixture of both mature particles of normal mor-
phology and immature particles (Fig. 4D). In contrast,
images of E98A showed mostly aberrant and immature
particles (Fig. 4B and 4D). The increased percentage (Fig.
4D) of distorted, aberrant and immature-like E98A virus
particles as compared to the wild-type control may thus
suggest that the E98 is important for proper protein con-

A Wild typ

Figure 4
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formation that is necessary for intermolecular CA-CA
interactions. Based on the analysis of inter-atomic con-
tacts [19], we found that the E98 residue is not involved
in any inter-atomic contact with other CA residues. There-
fore, it is possible to speculate that the E98A mutation
may rather be involved in inter-molecular CA-CA interac-
tion or with other possible cellular factors involved in this
process.

List of abbreviations used
HIV, human immunodeficiency virus; CA, capsid; CypA,
cyclophilin A;

Competing interests
The author(s) declare that they have no competing inter-

ests.

D Enumeration of particles

Abberant
Mature
W Immature

100% A
90% A
80% A
70% A
60% -
50% A
40% A
30% A
20% A
10% -

0% -

E98A Control

Transmission electron microscopy analysis of mutant and wild-type virions as described previously [4]. (A) With the control
virus, a dense core material was shown inside the envelope of immature virus (left panel) and mature virus with dense conical
core structure (right panel). (B) Many particles produced by cells transfected with the E98A mutant had either virions with an
immature structure or abnormal core morphology (left panel) and a very few detectable cones. Under higher magnification, the
E98A virions were observed to be a heterogeneous population of particles (right panel) with varying size and conical core
structures, where a number of virions with an electron-lucent centre and aberrant cores were detected (lower panel). (C)
EI87G virions with a characteristic dense conical core material. Bars, 100 nm. (D) Numerical (%) analysis of 372 wild type

NL4-3 and 798 E98A virus particles with respective morphology.
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