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REVIEW

Insufficient natural killer cell responses 
against retroviruses: how to improve NK cell 
killing of retrovirus‑infected cells
Elisabeth Littwitz‑Salomon*†, Ulf Dittmer† and Kathrin Sutter†

Abstract 

Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses 
including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on 
their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector 
functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. 
The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strate‑
gies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation 
of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-
mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune 
factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can 
be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically 
to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effec‑
tive approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating 
cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic admin‑
istration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that 
direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this 
review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies 
that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
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Background
Despite more than 30  years of intensive research, HIV 
still represents a global health problem with up to 37 
million HIV-infected people worldwide in 2015. After 
infection with HIV, the human immune system is not 
able to fully control the virus, which finally results in the 
development of the lethal acquired immunodeficiency 
syndrome (AIDS). HIV preferentially infects human leu-
cocytes like macrophages and T cells carrying the surface 
protein CD4 and the co-receptor CXCR4 or CCR5. The 
progression to AIDS is accompanied with a decline in 

CD4+ T cell numbers. However, the reasons for the fail-
ure of the host immune system in HIV infection are com-
plex. To date, there is no cure or vaccine available, but 
antiretroviral therapy (ART) can control the progression 
of the disease for decades.

To develop new strategies to combat retroviral infec-
tions, animal models are required to analyze host 
immune responses against retroviruses and their modu-
lation by various immunotherapies. As mice cannot be 
infected with HIV-1, murine retroviruses should be used 
to discover basic concepts of innate and adaptive immu-
nity in retroviral infections. The mouse model that has 
been used most intensively to study retroviral immunity 
in the past is the infection of mice with the Friend Ret-
rovirus (FV) complex. The FV complex, consisting of the 
Friend murine leukemia virus (F-MuLV) and the Spleen 
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focus-forming virus (SFFV), induces acute splenomegaly 
in susceptible mice due to a rapid polyclonal erythroblast 
proliferation and transformation, which is subsequently 
followed by the development of a lethal erythroleukemia 
[1]. However, resistant mouse strains mount a potent 
antiviral immune response during the acute phase of 
infection that can prevent the onset of leukemia [2]. 
Despite this initial viral control, FV eventually escapes 
from T cell mediated immunity and establishes a chronic 
infection [3]. This mouse model does not resemble path-
ological features of HIV-1 infection, but there are many 
similarities in innate and adaptive immune responses 
during HIV-1 and FV infection [4]. The development of 
chronic infection is associated with dysfunctionality of 
effector CD8+ T cells and the activation and expansion 
of regulatory T cells in HIV-1 and FV infection [5, 6]. NK 
cell responses were also shown to control acute infec-
tions with FV or HIV-1 [7, 8]. Thus, the FV model allows 
to study NK cell functions during acute retroviral infec-
tion in great detail and to therapeutically manipulate the 
NK cell response in retroviral infections in vivo.

NK cell biology
The first line of immune responses against viruses is medi-
ated through innate immune cells. As a part of the innate 
immune system NK cells are responsible for early antivi-
ral functions. NK cells express various germline-encoded 
inhibitory and activating receptors, like natural cyto-
toxicity receptors (NCRs), C-type lectin-like receptors 
and killer cell immunoglobulin-like receptors (KIRs) in 
humans and the corresponding Ly49 receptors in mice. 
A dysbalance of signals from these receptors can lead to 
activation of NK cells. NK cell effector functions include 
cytotoxicity and production of cytokines and chemokines. 
In humans, NK cells represent 2–18% of the lymphocytes 
in human peripheral blood [9] and are comprised of two 
main subsets, characterized by bright CD56 (CD56bright) 
or low-density CD56 (CD56dim) expression [10]. CD56dim 
NK cells constitute more than 90% of the NK cells in the 
peripheral blood and they are able to induce apoptosis of 
virus-infected cells by the release of granzymes and per-
forin or binding of ligands (TRAIL, FasL) to their death 
receptors (TRAIL-R, FasR). The majority of this NK cell 
subset expresses CD16 (Fcγ receptor III) [10], which is 
necessary for ADCC and critical for NK cell mediated 
lysis of HIV-infected cells [11]. A minority of NK cells 
are CD56bright (10%), a subset that efficiently produces a 
variety of cytokines such as interferon-γ (IFN-γ), tumor 
necrosis factor-α (TNF-α), granulocyte–macrophage col-
ony-stimulating factor (GM-CSF) and IL-10 upon activa-
tion [12]. In mice, NK cells can be characterized with the 
C-type lectin NK1.1 and CD49b, which in combination 
defines mature NK cells. Equivalent to CD56 in human NK 

cell subsets, murine NK cells expressing CD27 are primar-
ily cytokine producers whereas CD27− CD11b+ NK cells 
exhibit a cytolytic phenotype [13, 14]. Maturation and acti-
vation of NK cells correlates with DC activity and cytokine 
production whereas NK cells are also able to alter DC 
functions, reviewed in detail elsewhere [15, 16]. Crosstalk 
between NK cells and DCs is often followed by maturation 
of DCs and an upregulation of NK cell effector functions. 
Production of type I IFN by plasmacytoid DCs (pDCs) or 
release of IL-12, IL-15 and IL-18 by conventional DCs as 
well as direct cell–cell contact result in higher cytokine 
production and improved cytotoxicity of NK cells [17–21]. 
Cytokines such as IFN-γ and TNF-α produced by NK cells 
mediate maturation and increase functionality of DCs 
[22]. On the other hand, NK cells can eliminate immature 
DCs via recognition by the activating receptor NKp30 [19]. 
Additionally, production of immunosuppressive IL-10 by 
NK cells further dampens not only DC activation but also 
pleiotropic immune responses [23].

HIV therapy: today and future prospects
Currently, more than 37 million people are infected with 
HIV. Despite great progress in HIV research, there is still 
no cure from HIV infection. Treatment with antiretro-
viral drugs can diminish viremia below detection limit, 
but eradication of HIV from viral reservoirs or activa-
tion of the immune system to control HIV infection is 
still a task for the future. Moreover, there are numerous 
disadvantages of ART. ART requires life-long treatment 
with high costs, drug resistance development as well as 
side effects of the medication. There are different thera-
peutic approaches for new HIV therapies to overcome 
these problems: (1) Eradication cure with the objective 
to completely eliminate HIV from all compartments of 
the body. (2) Hybrid cure aiming at reducing viral res-
ervoirs as well as improving virus control without the 
usage of ART. (3) Functional cure with the intention to 
control HIV replication without using ART [24]. Several 
of these approaches to induce HIV immune control are 
currently under investigation, like broadly neutralizing 
antibody therapies, usage of recombinant viral vectors 
to achieve induction of cytotoxic CD8+ T cells as well 
as genome editing or expansion and activation of virus-
specific immune cells. Modification of NK cell activ-
ity should also be considered since NK cells can directly 
control retroviral infections and regulate virus-specific T 
cell responses [25].

Sensing of retroviruses and the impact on NK cell 
responses
Sensing of viruses is utilized by a variety of differ-
ent host pattern recognition receptors (PRRs). During 
the replication cycle of retroviruses like HIV, simian 
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immunodeficiency virus (SIV) or MuLV, various nucleic 
acid intermediates are generated (reviewed in [26]), 
which might be potential targets for endosomal or cyto-
plasmic sensors. Up to now, it is not completely under-
stood, which PRRs are essential for the recognition of 
HIV or murine retroviruses and how this sensing further 
influences host immune responses. During HIV infection 
TLR7/8 senses GU-rich ssRNA in pDCs and monocytes 
leading to an antiviral state in the infected and bystander 
cells by the induction of type I IFN (Fig. 1) [27, 28]. Other 
important sensors for retroviruses located in the cytosol 
are RIG-I [29], cGAS [30, 31], and the IFNγ-inducible 
protein 16 (IFI16) [32, 33]. During murine retrovirus 
infections TLR3 and TLR7 are required for efficient viral 
sensing and induction of innate and adaptive immune 
responses [34–37]. During Friend Retrovirus (FV) infec-
tion of mice deficiency in TLR3 resulted in decreased 
IFNα expression and impaired NK and CD8+ T cell cyto-
toxicity [37]. Immune sensing of viral infections can also 
induce inflammasome activation [38]. Inflammasomes 
are cytosolic, multimeric protein complexes that inte-
grate several endogenous and exogenous signals. Formed 
inflammasomes regulate caspase-1, which proteolytically 
activates IL-1β and IL-18 [39], which further influences 
NK cell responses. It has been reported that inflammas-
ome activation is induced during HIV infection in mono-
cytes and macrophages [38], which may in turn influence 
NK cell responses. 

NK cell responses in retroviral infections
Healthy cells are protected from NK cell-mediated kill-
ing primarily by the expression of Major histocompat-
ibility complex I or Human Leukocyte antigen (HLA)-C 
and HLA-E. Their interaction of these molecules with 
inhibitory receptors on NK cells suppresses the NK cell 
response. Decreased expression of HLA-A and HLA-B 
on HIV-1 infected target cells has been described as 
immune evasion strategy to avoid recognition by cyto-
toxic CD8+ T cells, but this escape from adaptive immu-
nity can render HIV-1 infected cells susceptible for NK 
cell killing [40]. NK cells can eliminate retrovirus infected 
target cells in vitro and in vivo through direct lysis or via 
ADCC [7, 8, 41]. Especially in acute retroviral infections 
(HIV-1 in humans, SIV in macaques, and FV in mice) 
elevated NK cell numbers and augmented cytolytic activ-
ity of NK cells could be detected [7, 42–44]. Moreover, 
depletion of NK cells during early FV infection showed 
an increase in virus infected cells in mice [7]. Activated 
NK cells can also produce chemokines that bind to the 
CCR5 receptor (MIP-1α  =  CCL3, MIP-1β  =  CCL4, 
RANTES = CCL5) and block the entry of R5-tropic HIV 
strains into CD4+ target cells by competitive prevention 
of receptor binding [45, 46]. This inhibitory effect on HIV 

replication through chemokine release is impaired in the 
presence of high HIV viremia [47]. The secretion of the 
antiviral cytokines IFN-γ and TNF-α by NK cells can also 
mediate suppressive effects on retrovirus replication and 
does not correlate with the level of plasma viremia [47, 
48]. Whereas NK cells clearly play an antiviral role in 
acute retroviral infections, they may have different effects 
during the chronic infection phase. [7]. During chronic 
FV infection or persistent infections like LCMV, NK cells 
negatively regulate virus-specific CD4+ and CD8+ T cell 
responses, influencing adaptive immunity and possibly 
contributing to viral chronicity (reviewed in [49–51]). 
Furthermore, during other chronic viral infections, such 
as HIV and hepatitis C virus (HCV), a third CD56negative 
NK cell population arises (up to 15–38% of the total NK 
cells), which represents a dysfunctional population with 
lytic deficiencies and secretory dysregulations [42, 52, 
53].

Counter‑regulation of the NK cell response 
by retroviruses
Viral proteins and peptides
The importance of the NK cell response in retroviral 
infections became obvious when researchers discovered 
that HIV-1 actively counter-regulates their response. 
Interactions of activating receptors such as NKG2D and 
its ligand retinoic acid early transcript-1 (RAE-1) are 
essential for the activation of NK cells. In FV-infected 
mice, interactions of NKG2D–RAE-1 were important 
for NK cell-mediated killing of infected target cells [54]. 
Thus, retroviruses developed mechanisms to downregu-
late ligands for activating receptors on infected cells to 
escape from NK cell killing. For example, ligands for the 
NK cell receptors NKG2D (CD314), DNAM-1 (CD226) 
and NKp44 (CD336) are counter-regulated by the HIV-1 
proteins Nef (negative regulatory factor) and Vpu (viral 
protein U), an inhibitory mechanism to prevent activa-
tion of NK cells [55–58]. In plasma of HIV-1 patients the 
release of soluble ligands for NKG2D detuned signaling 
of this activating receptor and resulted in its downregula-
tion [57].

During the last years, several combinations of NK 
cell receptors (KIRs) and their ligands (HLA alleles) 
were identified, which are beneficial or detrimental for 
the outcome of HIV infection and disease progression 
(reviewed elsewhere [59]). Interestingly, activation or 
inhibition of NK cells also depends on the recognition of 
peptides bound to HLA molecules. Recent data highlight 
the importance of HIV-1-derived peptides presented on 
HLA molecules and the impact of small mutations within 
these peptides for binding of NK cell receptors [60]. Espe-
cially the carboxyl terminus and in particular the residues 
at positions 7 and 8 seem to be of specific relevance for 
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the initiation and the strength of binding [61]. Sequence 
polymorphisms within regions of HIV-1 that are targeted 
by inhibitory KIRs improved the binding and resulted in 
decreased antiviral activity of NK cells [62, 63]. In con-
trast, HIV sequence mutations can also prevent bind-
ing of inhibitory receptors to HLA molecules, thereby 
increasing the susceptibility of infected cells to lysis [64].

Immunological dysregulation of NK cell responses 
during retroviral infections
Beside NK cell evasion mechanisms that are directly 
mediated by HIV-1 proteins or peptides, retrovirus 
infections can also dysregulate molecules or cells of the 
immune system to circumvent NK cell activation. One 
example is that retroviruses counter-regulate type I IFN 
responses, which are in turn critical for NK cell activa-
tion and differentiation (Fig. 1). It has been reported that 

IFNα is only transiently induced during acute human 
and simian retroviral infections (HIV, SIV). Plasmacy-
toid DCs are the main producers of type I IFNs, but they 
become infected by HIV due to the expression of CD4 
on their surface. As a consequence the blood pDC lev-
els decline during HIV infection, which reduces the IFN 
response [65, 66]. In addition, HIV downregulates IRF3 
especially in CD4+ T cells and thus suppresses the induc-
tion of type I IFN [67, 68]. During chronic HIV infection 
IFN-α might be associated with disease progression. It 
has been suggested that persistent IFN-α production by 
pDCs during chronic HIV infection contribute to hyper 
immune activation [69–71]. Blockade of IFNα recep-
tor prevented the activation of HIV-exposed CD4+ 
and CD8+ T cells [72]. Additionally, treatment of SIV-
infected macaques with human pegylated IFN-α2a led to 
a decline of induced ISGs after repeated IFN application 
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Fig. 1  NK cell influencing factors. cGAS, TLR7 and TLR3 are important for the sensing of retroviruses. The sensing results in the production of 
cytokines that stimulate NK cell responses. NK cells represent an important immune cell subset, which contributes to the control of retroviral infec‑
tions. Retroviruses can actively suppress molecular or cellular factors that are required for NK cell activation. Immunosuppressive cytokines such as 
TGF-β or cytokine deprivation by Tregs also suppress NK cell effector functions. NK cell activity can be enhanced by therapeutic stimulation with 
exogenous cytokines (IL-2, IL-12, IL-15, IL-18) and by IFNα/β. cGAS cyclic GMP-AMP synthase, TLR toll-like receptors, IL interleukin, IFN interferon, TGF 
transforming growth factor
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resulting in an IFN desensitized state [73]. Treated ani-
mals expressed elevated levels of FOXO3a, a negative 
regulator of IFN signaling, and increased depletion of 
CD4+ T cells was observed, although no changes in viral 
loads were detectable. During the infection of mice with 
murine retroviruses type I IFN is undetectable in the 
serum [74, 75] and Lin et  al. [76] recently showed, that 
Moloney Leukemia Virus (MLV)-based vectors directly 
block the production of type I IFN in pDCs. The molec-
ular mechanism of this suppression remains currently 
unknown. Our own studies with FV-infected mice have 
demonstrated that mice lacking the receptor for type I 
IFN have viral loads comparable to wild type mice [77], 
suggesting that the type I IFN response is significantly 
reduced by the virus. Nevertheless, exogenous applica-
tion of type I IFN subtypes during acute FV infection can 
activate NK cells and reduce viral replication and infec-
tion-induced disease [78, 79].

During many infections myeloid DCs secrete IL-12 or 
IL-15 that potently induce NK cell activation and prolif-
eration (Fig.  1). In turn, NK cells secrete cytokines like 
IFN-γ, TNF-α and GM-CSF, which lead to the matura-
tion of myeloid DCs and further increase their cytokine 
production. During HIV infection, infected DCs can be 
found in the blood of untreated patients [80–82], how-
ever replication of the virus is very inefficient in DCs 
compared to activated CD4+ T cells [83, 84] due to the 
expression of different host restriction factors in DCs. 
Many studies showed that HIV-exposed or infected 
DCs have an altered cytokine expression profile [85–87]. 
In particular, the secretion of IL-12 by myeloid DCs is 
strongly reduced in HIV-infected individuals resulting in 
decreased proliferation of NK cells and diminished IFN-γ 
secretion by NK cells [88, 89]. Similar results were also 
described in acutely SIV infected macaques [90]. In vitro 
infection of DCs with HIV also led to a defective pro-
duction of IL-12 and IL-18 [91]. In contrast to IL-12 and 
IL-18, increased IL-15 levels were detected in the serum 
and lymph nodes of untreated HIV-infected individu-
als [92–95], which especially activates CD8+ T cells, but 
they did not analyze NK cells.

Several studies have shown that regulatory T cells 
(Tregs) can suppress homeostatic NK cell responses [96, 
97]. We and others reported that acute retroviral infec-
tions (FV, HIV, SIV) expand and activate Tregs, which 
then suppress virus-specific T cell responses [5, 98, 99]. 
It was therefore likely that retrovirus-induced Tregs also 
inhibit antiviral NK cell responses. Indeed, we recently 
demonstrated that specific ablation of Tregs in FV 
infected mice improved the activation, cytokine produc-
tion, and cytotoxic activity of NK cells [100]. Competition 
for IL-2 was found to be the main molecular mechanism 
of Treg–NK cell suppression (Fig.  1). The expanded 

Tregs consumed large amounts of IL-2 with their high-
affinity trimeric IL-2 receptor resulting in deprivation of 
IL-2 from NK cells, which only express the low-affinity 
dimeric IL-2 receptor [101, 102]. Also other suppressive 
mechanisms, such as the expression of TGF-β (Trans-
forming Growth Factor-β) by Tregs, have been described 
for the inhibition of NK cell activity [103, 104].

Therapeutic approaches to augment NK cell 
responses in retroviral infections
IFNα therapy
Endogenous expression of type I IFNs strongly influences 
NK cell responses during viral infections. Type I IFNs 
promote NK cell activation and cytotoxicity [105–112]. 
IFNα also regulates the expression of IFN-γ by NK cells 
in a Signal Transducers and Activators of Transcrip-
tion (STAT) 4-dependent manner [113, 114]. Treatment 
of patients chronically infected with HCV showed that 
exogenous IFNα can polarize NK cells to a cytotoxic phe-
notype [115]. During acute FV infection of mice, applica-
tion of IFNα (the IFNα1 and IFNα11 subtypes) improved 
NK cell responses resulting in reduced viral loads [78, 
79]. This was a direct effect of IFNα on NK cells as shown 
by experiments with bone marrow chimeric mice [79]. 
Treatment of HIV-infected humanized mice with differ-
ent subtypes of IFNα revealed a potent role of the sub-
type IFNα-14 in reducing viremia and proviral loads 
[116]. Furthermore, IFNα-14 therapy augmented the fre-
quency of TRAIL+ NK cells whereas other subtypes did 
not alter the NK cell response. In vivo application of IFNα 
also restored perforin expression of NK cells in HIV-
infected patients [117]. Similar effects were observed in 
HIV in  vitro models. NK cell lysis of HIV-infected cells 
was strongly enhanced by CpG treatment and this effect 
was mediated by type I IFN [118].

The molecular mechanisms that are involved in IFN-
induced NK cell activation are still not fully understood. 
The expression of type I IFN induces transcription of 
hundreds of IFN-stimulated genes (ISGs) with direct 
antiviral as well as immunomodulatory properties. Some 
of these expressed ISGs were shown to be important in 
controlling retroviral replications. These host restric-
tion factors include apolipoprotein B mRNA-editing 
enzyme, catalytic polypeptide-like 3G (APOBEC3G, 
A3G), Tetherin, SAM and HD domain-containing pro-
tein 1 (SAMHD1), tripartite motif-containing protein 
5α (TRIM5α), Myxovirus resistance 2 (MX2), Schlafen 
11 (SLFN11) and IFN-induced transmembrane proteins 
(IFITMs) [119, 120]. Tetherin was shown to inhibit the 
release of retroviruses from infected cells by tethering 
nascent virions to the plasma membrane [121]. Despite 
this direct antiviral function, IFN-induced Tetherin also 
improved NK and T cell responses during acute FV 
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infection [122]. Tetherin expression mediated increased 
surface expression of MHC class II and the costimulatory 
molecule CD80, as well as the production of IL-15 by 
DCs, which correlated with increased IFN-γ production 
and higher cytotoxicity of NK cells [123]. The authors 
hypothesized that the tethered virions may promote viral 
sensing by TLR3 or TLR7 upon endocytosis resulting 
in higher cytokine expression by DCs, which modulates 
NK cell functions. Various in vitro studies demonstrated 
that cells infected with HIV-1Δvpu cannot antagonize 
Tetherin. Thus, HIV-1Δvpu-infected cells have enhanced 
numbers of nascent virions tethered to the cell mem-
brane and are indeed more susceptible to NK cell-medi-
ated killing via ADCC [124–126]. The restriction factor 
A3G was also described to influence NK cell responses 
during retroviral infections. A3G belongs to the family 
of cytidine deaminases and is incorporated into prog-
eny viruses in the absence of the HIV-1 viral infectivity 
factor (Vif ). Upon new infections of other cells incorpo-
rated A3G deaminates cytidine to uridine during reverse 
transcription, resulting in hypermutations in the provirus 
and degradation of newly synthesized DNA strands [127, 
128]. A3G can also directly inhibit reverse transcription 
[129]. Norman et  al. demonstrated that the HIV-1 viral 
protein (Vpr) binds to uracil DNA glycosylase 2 (UNG2), 
which was activated through A3G-mediated deamina-
tion processes. This interaction induced DNA-damage 
repair mechanism results in higher surface expression 
of NKG2D ligands in infected cells and subsequently 
improved NK cell cytotoxicity [130]. Thus, therapeutic 
application of IFNα directly activates NK cells, but can 
also augment the expression of host restriction factors, 
which further augment NK cell effector functions.

Stimulation of NK cells with IL‑2
IL-2 was discovered in the 1970s and was used for the first 
immunotherapy proved to be beneficial in patients with 
end-stage metastatic melanoma or renal cell carcinoma 
[131–134]. IL-2 was originally described as T lympho-
cyte stimulatory factor influencing important functions 
in survival, activation, proliferation and differentiation 
of various lymphocyte populations including NK cells 
[135–137]. The importance of this cytokine for NK cell 
activation and expansion was shown in experiments with 
IL-2 knockout mice [138, 139]. Interestingly, HIV elite 
controllers have significantly higher cytokine levels than 
progressors, especially for IL-2, IFN-γ and TNF-α [140, 
141]. NK cells in elite controllers or long-term nonpro-
gressors reveal higher activation and increased cytotoxic 
activity [142, 143]. In clinical trials with HIV progressors, 
treatment with IL-2 plus antiretroviral therapy increased 
the CD4+ T cell count but resulted in no additional clini-
cal benefit [144]. Long-term treatment of HIV patients 

with intermittent IL-2 therapy mainly expanded CD25+ 
CD4+ regulatory T cells whereas it did not alter CD25 or 
CD122 expression on NK cells [145].

One reason for the up to now unsuccessful IL-2 therapy 
in HIV patients might be that different receptors for IL-2 
(IL-2R) exist on distinct immune cell populations. There 
is a trimeric, high-affinity IL-2R and a dimeric, low-affin-
ity receptor [146]. The high-affinity IL-2R consists of the 
subunits IL-2Rα (CD25), IL-2Rβ (CD122) and the com-
mon γ-chain (CD132) whereas the low-affinity receptor 
comprises of CD122 and CD132. Memory CD8+ T cells 
as well as NK cells express high levels of the low-affinity 
dimeric IL-2R on the cell surface, however, Tregs, acti-
vated CD4+ and CD8+ T cells predominantly express 
the high-affinity IL-2R [137]. Thus, standard IL-2 therapy 
mainly affects T cells, but not NK cell responses.

IL-2/anti-IL-2 monoclonal antibody complexes can over-
come this problem. IL-2 in complex with anti-mouse IL-2 
mAb S4B6 or anti-human IL-2 MAB602 is preferentially 
directed to the CD122 receptor subunit. Treatment with 
specific IL-2/anti-IL-2 mAb complexes also circumvents 
severe side effects of high dose IL-2 therapy and results in 
increased half-life of IL-2 in vivo [147, 148]. The IL-2 mAb 
S4B6 complex has already been shown to improve NK cell 
responses and subsequent clearance of tumor cells [100, 
149]. In the FV model, an up to 90% reduction in viral loads 
was demonstrated after specific stimulation of NK cells 
with IL-2 mAb S4B6 complex [100]. In this study, prolif-
eration and maturation of NK cells as well as activation and 
effector functions were significantly improved. The IL-2 
mAb S4B6 complex therapy prohibited the consumption of 
the IL-2 by Tregs and made it available for NK cell stimula-
tion. The study shows that targeted IL-2 therapy may be a 
new approach to selectively stimulate the antiviral activity 
of NK cells in retroviral infections.

Enhancement of NK cell functions by IL‑12, IL‑15 or IL‑18
Stimulation of NK cells with IL-2 antibody complexes 
is very potent for the reduction of tumor burden and 
viral replication but for retroviral infections complete 
viral control was not achieved by IL-2 stimulation so far. 
Combination therapy with other cytokines further aug-
menting NK cell functions, e.g. IL-12, IL-15 and IL-18, 
would be a good amendment. Interestingly, IL-15 shares 
numerous biologic properties with IL-2 such as the 
IL-2R/IL15R β-chain (CD122) and the common γ-chain 
(CD132), however IL-15 binds with high-affinity to its 
unique IL15Rα subunit (CD215). IL-15 is indispensa-
ble for the maturation of NK cells and IL-15Rα knock-
out mice completely lack NK cells [150, 151]. Similar to 
the biologic effect of IL-2, IL-15 efficiently activates NK 
cells and CD8+ T cells while it negligibly stimulates Tregs 
[101].
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During acute HIV-1 infection, Stacey et  al. [152] 
detected a correlation between an increase in plasma 
viremia and elevated IL-15 and IFNα levels. IL-15 lev-
els seem to correlate with viral loads, since IL-15 ther-
apy resulted in accelerated disease progression and 
augmented viral set points probably due to enhanced 
CD4+ target cell proliferation [153]. Furthermore, others 
have shown that IL-15 levels during acute SIV infection 
were associated with higher susceptibility of memory 
CD4+ T cells for SIV infection [154].

However, also promising results of IL-15 therapy in 
retroviral infections were obtained. Stimulation of NK 
cells with a superagonistic IL-15 antibody increased their 
cytotoxic activity and was able to inhibit acute HIV-1 
infection in humanized mice [155]. Injections of recom-
binant IL-15 increased numbers of NK cells and effector 
memory CD8+ T cells in SIV infection, but surprisingly, 
no changes in viral set points were detected [156]. In 
melanoma models it was demonstrated that stimulation 
of effector cells with IL-15/IL-15Rα complexes or the 
IL-15 fusion protein RLI (composed of the N-terminal 
domain of IL-15Rα coupled via a linker to IL-15) sig-
nificantly reduced tumor burden [157]. The increased 
elimination of melanoma cells post treatment with RLI 
was NK cell dependent [157, 158]. However, such IL-15 
complex therapies have so far not been tested in retro-
viral infection models. Thus, the role of IL-15 in NK cell 
activation and especially its relevance for the treatment 
of retroviral infections has to be further investigated in 
future studies.

In 1991, IL-12 was first termed “natural killer cell 
stimulatory factor” due to its capacity to augment NK 
cell cytotoxicity, but it also increases the IFN-γ produc-
tion and the lymphocyte proliferation [159]. The heter-
odimeric IL-12 consists of p35 and p40 subunits, which 
are shared by members of the IL-12 family like IL-23 and 
IL-35 [160].

In HIV-infected patients, the production of heterodi-
meric IL-12 is about fivefold reduced in comparison to 
healthy controls [161, 162]. Thus, HIV patients may ben-
efit from therapy with exogenous IL-12.

Treatment with the biologic active IL-12 (p70) induced 
high IFN-γ levels and protected mice from murine 
acquired immunodeficiency syndrome (MAIDS) [163]. 
Furthermore, reduced viral loads and prolonged survival 
of acutely SIV-infected animals was observed following 
IL-12 administration [164]. Expectedly, IL-12 therapy 
strongly influenced NK cell responses. Treatment with 
IL-12 during acute SIV infection augmented cytotoxic 
responses and increased numbers of NK cells. However, 
only partial restoration of NK cell functions was detected 
after IL-12 therapy during the late phase of infection due 
to the loss of cytokine responsiveness [165, 166].

Alternatively, combination therapy with IL-2 and IL-12 
increased the capacity of activated NK cells to eliminate 
tumor cells [167]. IL-12 in combination with the pro-
inflammatory cytokine IL-18 synergistically enhanced 
NK cell activation, IFN-γ production and proliferation, 
whereas during MCMV infection, activation of NK cells 
was more IL-18 than IL-12 dependent [168, 169].

IL-18 belongs to the IL-1 cytokine superfamily and is 
released early in response to viral infections [170]. It is 
constitutively produced in an inactive form (pro IL-18) 
and requires processing by the intracellular cysteine pro-
tease caspase-1 for maturation from the precursor into 
a biologically active molecule [171, 172]. The proinflam-
matory potential of IL-18 is constitutively antagonized 
by sustained secretion of the IL-18 binding protein (IL-
18BP) [173].

Infection of macaques with simian/human immu-
nodeficiency viruses resulted in a transient increase in 
IL-18 serum levels at primary viremia and elevated IL-18 
production was associated with seroconversion [174, 
175]. More precisely, the infection with HIV resulted in 
decreased IL-18BP concentrations and increased lev-
els of biological active IL-18 [176]. It was demonstrated 
that IL-18 inhibited the production of HIV-1 p24 antigen 
in vitro [177] whereas during the chronic stage of HIV-1 
infection, IL-18 directly stimulated viral replication [178]. 
In naïve mice increased FasL-mediated cytotoxicity of 
NK cells and upregulation of perforin-mediated NK cell 
activity was detected following IL-18 administration 
[179, 180]. In contrast, augmented IL-18 concentrations 
in chronically HIV-infected individuals were associated 
with increased death of NK cells [181]. Wang et al. [182] 
demonstrated that pre-treatment with IL-18 prior to 
HIV-1 infection could abrogate viral replication in vitro, 
predicting a potential for IL-18 treatment in HIV infec-
tion. Unfortunately, they did not analyze the involvement 
of NK cells in this study.

As described above, there is conflicting data about 
the effect of IL-18 monotherapy on NK cell responses. 
Nevertheless, NK cells treated with IL-18 in combina-
tion with IL-12 or triple therapy with IL-12, IL-15 and 
IL-18 resulted in strongly augmented NK cell degranula-
tion and proliferation in cancer studies [183, 184]. It was 
also reported that pretreatment of isolated NK cells with 
IL-12, IL-15 and IL-18 resulted in increased antitumor 
activity, reduced tumor growth as well as cytokine-medi-
ated induction of memory NK cells [185]. The efficiency 
and tolerability of cytokine administration depend on 
several factors such as administration routes, schedule 
of injections and the dosage. Administration of IL-12 
could lead to flu-like symptoms, toxic effects on the liver 
and bone marrow in cancer patients, which are associ-
ated with the release of IFN-γ, TNF-α and chemokines 
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[186]. Treatment of cancer patients with recombinant 
IL-15 may result in a reversible neutropenia but also in 
enhanced numbers of circulating NK cells and memory 
CD8+ T cells with minimal increases in Treg frequencies 
[187, 188]. In melanoma patients, IL-18 therapy in bio-
logically active doses resulted merely in mild side effects, 
however, monotherapy showed only limited efficacy [189, 
190]. Therefore, a cytokine combination therapy may 
show promising therapeutic effects but was not tested as 
anti-retroviral treatment until now.

Conclusion
NK cells are important cytotoxic immune cells involved 
in the control of retroviral infections. Unfortunately, 
viruses developed numerous strategies to evade the 
immune pressure by cytolytic lymphocytes. Therefore, 
potent antiviral effects of NK cells in retroviral infections 
seem to be rather limited. Recently, therapeutic strate-
gies to reactivate and improve NK cell functions were 
developed, mainly in cancer models. These new strategies 
are discussed in this review. Some of these approaches 
showed promising results in the first studies with ret-
roviruses. A combination of these new therapies with 
ART might be an interesting future concept for achiev-
ing functional cure in patients that ultimately stop ART 
treatment.
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