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Abstract 

Background: In most patients, current antiretroviral therapy (ART) regimens can rapidly reduce plasma viral load. 
However, even after years of effective treatment, a significant proportion of patients show residual plasma viremia 
below the clinical detection limit. Although residual viremia might be associated with increased chronic immune acti‑
vation and morbidity, its origin and its potential role in the replenishment of the viral reservoir during suppressive ART 
is not completely understood. We performed an in‑depth genetic analysis of the total and episomal cell‑associated 
viral DNA (vDNA) repertoire in purified CD4+ T cell subsets of three HIV‑infected individuals, and used phylogenetic 
analysis to explore its relationship with plasma viruses.

Results: The predominant proviral reservoir was established in naïve or memory (central and transitional) CD4+ T cell 
subsets in patients harboring X4‑ or R5‑tropic viruses, respectively. Regardless of the viral tropism, most plasma viruses 
detected under suppressive ART resembled the proviral reservoir identified in effector and transitional memory CD4+ 
T‑cell subsets in blood, suggesting that residual viremia originates from these cells in either blood or lymphoid tissue. 
Most importantly, sequences in episomal vDNA in CD4+ T‑cells were not well represented in residual viremia.

Conclusions: Viral tropism determines the differential distribution of viral reservoir among CD4+ T‑cell subsets. 
In spite of viral tropism, the effector and transitional memory CD4+ T‑cells subsets are the main source of residual 
viremia during suppressive ART, even though their contribution to the total proviral pool is small. However, the lack of 
concordance between residual viremia and viral variants driving de novo infection of CD4+ T cells on ART may reflect 
the predominance of defective plasma HIV RNA genomes. These findings highlight the need for monitoring the multi‑
ple viral RNA/DNA persistence markers, based on their differential contribution to viral persistence.
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Background
Current antiretroviral therapy (ART) can control 
viremia in a few weeks, and its extensive use has notably 
decreased mortality and morbidity rates among individu-
als infected by human immunodeficiency virus type 1 
(HIV-1). However, complete clearance of the infection is 
never achieved, and plasma viremia rebounds, with very 

few exceptions, if treatment is discontinued [1]. The per-
sistence of HIV-1 is believed to be a consequence of a 
population of latent proviruses that are established early 
during the primary infection and remain dormant for 
years, mostly in long-lived memory CD4+ T cells [2–7].

In the last decade, the use of ultrasensitive technolo-
gies to measure viral load has made it possible to detect 
residual viremia (HIV-1 RNA levels below 50 copies/
mL), even after many years of effective ART [8–10]. 
As free HIV-1 virions have a short circulating half-life, 
residual viremia evidences recent virus production by 
an “active” reservoir during effective ART. The potential 
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consequences of this constant supply of viral antigens for 
chronic immune activation are not entirely clear [11, 12]. 
On the other hand, antiretroviral treatment intensifica-
tion does not lower the levels of residual viremia [13–19], 
and data from phylogenetic analyses of the viruses found 
in the plasma of ART-treated individuals show a lack 
of long-term genetic evolution [20–23] suggesting that 
residual viremia does not largely reflect ongoing viral 
replication. Still, it is not fully established whether the 
source of this active viral production is a particular cell 
type or anatomical compartment, in which antiretroviral 
treatment might be preventing new infection events [24, 
25]. Indeed, residual viremia might also be the result of 
small bursts of viral production derived from clone-spe-
cific T-cell activation [26–29] or a combination of both 
mechanisms. This issue is of particular interest, as the 
therapeutic approaches to be considered when trying to 
reduce the chronic immune activation that is potentially 
derived from residual viremia will depend on the origin 
and specific target cell populations.

In contrast to the long-term stability of integrated 
proviral genomes, episomal vDNA is considered a more 
dynamic, surrogate marker of recent infection events 
[30–34]. Thus the detection of episomal vDNA molecules 
in the peripheral blood mononuclear cells (PBMCs) of 
some patients on ART or after treatment intensification 
with an integrase inhibitor, suggests some degree of de 
novo infection may persist in cellular or anatomical res-
ervoirs that may be partially refractory to antiretroviral 
drugs [13, 35, 36]. The actual origins of the virus that 
fuels the infection events revealed by episomal sequences 
are unknown as is the role of residual viremia in this 
“cryptic” viral replication.

In order to identify the source of residual viremia dur-
ing ART, we isolated different T-cell subsets from periph-
eral blood and genetically characterized their proviral 
repertoire using ultra-deep sequencing. We also analyzed 
episomal vDNA to characterize the viral populations 
driving de novo infections in this scenario. Our results 
indicate that: (1) viral sequences in residual viremia are 
predominantly related to proviral sequences in effec-
tor and transitional memory CD4+ T-cells suggesting 
that residual viremia originates from these cells, and (2) 
there is limited sequence relationship between episomal 
vDNA and plasma viral RNA, suggesting that viruses in 
plasma are not the source of the de novo infection events 
detected in peripheral CD4+ T-cells.

Results
Patient characteristics and treatment outcome
A previous clinical trial performed in our hospital 
(Ithaca; NCT00685191) included 15 antiretroviral-
experienced HIV-infected patients who switched to a 

raltegravir-based salvage regimen at study entry. For fur-
ther ultra-deep sequencing analysis, we selected the five 
patients with the highest levels of total and episomal cell-
associated vDNA in PBMCs; consistent proviral HIV-1 
Env amplification in the different subsets was obtained 
from 3 individuals at baseline and after viral suppression 
(Table 1; Fig. 1a). 

Contribution of the different CD4+ T‑cell subsets to the 
establishment of viral reservoirs
We characterized four CD4+ T-cell subsets accord-
ing to the differential expression of the surface mark-
ers CD45RA, CCR7, and CD27, as follows: naïve (TN: 
CD45RA+CCR7+CD27+), central memory (TCM: 
CD45RA−CCR7+CD27+), transitional memory (TTM: 
CD45RA−CCR7−CD27+), and effector memory plus 
terminally differentiated cells (TEM+TD: CD45RA+/−C 
CR7−CD27−) (Additional file  1: Fig. S1). After purifica-
tion of each subpopulation by fluorescence-activated 
cell sorting (FACS) and quantification of HIV-1 DNA by 
qPCR, we observed a generalized reduction in the vDNA 
content in all patients and in all four subsets upon initia-
tion of rescue therapy (Fig. 1b). However, the proportion 
of each subset in peripheral blood and the relative con-
tribution of each subset to the total pool of infected cells 
were notably different between the patients but quite 
consistent over time despite viral suppression (Fig.  1c, 
and Additional file 2: Fig. S2). In Patient 1 (Pt-1) the TTM 
subset was preferentially infected (>50 % of the total pool 
of infected CD4+ T cells), followed by the TCM subpopu-
lation (19  %). In Patient 2 (Pt-2) the TN, TCM, and TTM 
subsets were extensively infected, and their contribu-
tion to the total pool of infected cells was equivalent. In 
Patient 3 (Pt-3), however, the memory subsets (TCM and 
TTM) bore only a small proportion of infected CD4+ T 
cells, and the TN subpopulation was the main target of 
viral infection (>80 % at all the time points analyzed). The 
only common feature in all subjects was the relatively 
low contribution of the TEM+TD subsets to the total pool 
of infected cells (<10 % in all patients and at all the time 
points analyzed), which was due to the small number of 
these cells found in peripheral blood and/or their low 
infection frequency (Additional file 2: Fig. S2).

Distribution of proviral reservoir among CD4+ T‑cell 
subsets is determined by viral tropism
The HIV-1 Env-V3 region was amplified from the total 
DNA fraction of each purified CD4+ T-cell subset and 
analyzed using ultra-deep sequencing. In order to pro-
vide a general overview of the proviral repertoire, we first 
constructed phylogenetic trees with proviral sequences 
from samples taken at baseline (plasma viral load >200 
RNA copies/mL) and at three additional time points 
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from week 1 and up to week 24, after treatment switch. 
In general, proviral sequences from the different cel-
lular subpopulations intermingled in the three subjects 
(Fig. 2). Similarly, the sequence space had minor chron-
ological compartmentalization (Additional file  3: Fig. 

S3). Interestingly, in Pt-2 and Pt-3 we observed some 
distinguishable clusters composed mainly—if not exclu-
sively—of TEM+TD cells, occasionally including proviral 
sequences from multiple time points (indicated by blue 
arrows in Fig. 2 and S3).

Table 1 Patient characteristics at baseline

Pt‑1 Pt‑2 Pt‑3

Age 44 61 43

Gender Female Male Male

Years from HIV‑1 diagnosis 11.3 12.5 17.4

Number of previous ART regimens 7 9 5

Nadir CD4+ T‑cells (cells/μL) 139 145 7

Plasma Viral Load (HIV RNA copies/mL) 15,000 230,000 421

CD4+ T cells (cells/μl) 341 614 221

Total HIV‑1 DNA in PBMC (cp/106 cells) 177.7 434.8 292.7

2‑LTR circles in PBMC (cp/106 cells) 31.8 260.5 175.4

Salvage regimen RAL, ETV, DRV/r RAL, 3TC, DDI, DRV/r RAL, TDF, FTC, DRV/r
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Fig. 1 Treatment outcome and infection dynamics in CD4+ T‑cell subsets. a CD4+ T‑cell counts and viral dynamics, including plasma viral load, total 
vDNA content, and 2‑LTR episomes in PBMCs, were measured up to 6 months after switching treatment in each patient. b Cell‑associated vDNA 
content was also measured by qPCR in each purified CD4+ T‑cell subset at baseline, at week 1 or 2, and also after viral suppression was achieved. 
c Relative contribution of each CD4+ T‑cell subset to the total pool of infected cells in each patient was calculated according to the vDNA content 
and the frequency of each subset in the whole CD4+ T‑cell population at baseline
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Fig. 2 Phylogenetic analysis of the whole vDNA integrant pool. Maximum likelihood phylogenetic trees (unrooted) showing the cell‑associated 
vDNA repertoire harbored by the different CD4+ T‑cell subsets (color coded). Viral sequences from the four time points analyzed (pre‑ and post‑
treatment switching) are included in the analysis. The overall result from the Env‑tropism prediction is indicated for each tree: a Patient 1; b Patient 
2; c Patient 3. Particular branches, composed mainly by TEM+TD proviral sequences and detected at different time points, are indicated by blue arrows
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The viral tropism, as predicted by the Geno2Pheno 
algorithm, revealed profound differences between the 
three study subjects: all viral sequences from Pt-1 were 
CCR5-tropic, those from Pt-3 were CXCR4-tropic, and 
there was a mixture between CCR5- and CXCR4-tropic 
sequences in Pt-2. Indeed, in the phylogenetic tree from 
Pt-2, CXCR4-tropic quasispecies (indicated in Fig.  2b) 
included most of the sequences from TN, TCM, and TTM 
CD4+ T cells, while CCR5-tropic proviruses belonged 
mainly to the effector subsets: the proportion of CCR5-
tropic Env variants found in TEM+TD cells ranged from 
33 to 61 % at the different time points analyzed, although 
they represented less than 15 % in the other cell subsets 
(data not shown). Overall, these differences in viral tro-
pism may explain the differential contribution of the TN 
CD4+ T-cell subset to the total pool of infected cells in 
each subject (Fig.  1c), as their susceptibility to HIV-1 
infection is highly dependent on CXCR4 co-receptor 
usage.

Long‑lived persistence of archival proviruses 
in highly‑differentiated CD4+ T‑cells
Because of differences in levels of co-receptor expres-
sion and intrinsic cellular half-life, the mixed viral tro-
pism found in Pt-2 offers a unique possibility to further 
evaluate and compare the contribution of each CD4+ 
T-cell subset to maintenance of the HIV-1 reservoir. 
For this purpose, viral evolution was further assessed 
by additional analysis of a retrospective plasma sam-
ple, collected 11  years before the baseline of the pre-
sent study. At the time of retrospective sampling, the 
patient was receiving antiretroviral therapy and had 
a plasma viral load of 18,000 vRNA copies/mL. As 
shown in Additional file  4 (Fig. S4), viral sequences 
detected in the retrospective sample were mostly dis-
tributed at the CCR5-tropic branches of the phyloge-
netic tree, with only some variants located in a cluster 
that could have represented intermediate variants in 
the transition to CXCR4 tropism. In contrast, at base-
line of the present study, the patient’s viruses showed a 
predominance for CXCR4-tropic variants at both the 
plasma and the proviral level (Fig.  3), with no signs 
of intermediate variants, which were only detected 
again as proviruses after switching treatment (Fig. 
S3). In fact, CCR5-tropic and transitional variants 
were mostly found as proviruses in the TEM+TD subset 
(Figs.  2b, 3), although TCM and TTM are also suscep-
tible to infection by CCR5-tropic viruses. The high 
prevalence of CCR5-tropic sequences in this subset in 
the absence of reservoir replenishment might reflect 
the long-term survival of highly differentiated CD4+ 
T-cell clones or the differentiation of other long-lived 
memory cells bearing archival proviruses.

Divergence between residual viremia and de novo 
infection events under effective ART
At baseline, we performed a phylogenetic analysis for each 
subject including viral sequences from plasma vRNA, epi-
somal vDNA (from total PBMCs), and total cell-associ-
ated vDNA from each CD4+ T-cell subset. In all subjects, 
we observed a high degree of similarity between major 
episomal and plasma viral clusters (Fig. 4). Proviral DNA 
sequences from all CD4+ T-cell subsets in the absence of 
therapy were found intermingled and reflecting mostly 
the actively replicating virus population.

Next, to evaluate the nature of residual viremia and 
cryptic viral replication under effective ART we performed 
the phylogenetic analysis of those samples taken when 
the patients had achieved viral suppression. Despite this 
analysis was not performed after long-term suppression to 
avoid resampling bias, we selected a sampling time frame 
contained in the third-phase decay kinetics of plasma HIV-
RNA after Raltegravir-based treatment initiation, in which 
most plasma viruses are presumed to come from latently 
infected cells that become activated [37]. The specific 
objectives of these analyses were as follows: (1) to identify 
whether a specific peripheral CD4+ T-cell subset is the ori-
gin of residual viremia under suppressive ART, and (2) to 
determine whether plasma virions fuel de novo infection 
events–as revealed by episomal cDNA species–in periph-
eral CD4+ T-cells from individuals on suppressive ART. 

Tropism inferred by G2P
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Fig. 3 Dynamics of the CCR5/CXCR4 tropism proportion in the 
cell‑associated vDNA in Patient 2. The proportion of X4/R5‑tropic 
sequences, as inferred by Geno2Pheno algorithm, is indicated for 
each sample. Results from the retrospective plasma sample are 
shown, together with samples from baseline and a time point after 
viral suppression. Likewise, data from the contemporaneous proviral 
DNA sequences from the purified CD4+ T‑cell subsets, and the episo‑
mal vDNA molecules from total PBMCs, are shown for comparison
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Pt-1 
Proviral  CD4+ Subsets 
Plasma viremia 
Episomal PBMCs 

Cluster 1
10 % 
53.1 %

Cluster 2
3.4 %
11.6 %

Cluster 1
39.2 %
32.5 % 

Cluster 2
25.3 % 
12.9 %

Pt-2
Proviral  CD4+ Subsets 
Plasma viremia 
Episomal PBMCs 

Pt-3 
Proviral  CD4+ Subsets 
Plasma viremia 
Episomal PBMCs 

CXCR4-tropism
34.1 % 

41% 
CCR5-tropism

16 % 
3.3 %

a

b

c
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For that purpose, we only used those samples from which 
the plasma HIV-1 vRNA and the episomal vDNA from 
PBMCs had been successfully amplified and sequenced. 
In the case of Pt-3 (Fig.  5), we observed a major plasma 
cluster including a highly predominant plasma clone and 
a portion (15.7 %) of the episomal sequences. However, the 
main episomal cluster (32  % of the episomal sequences) 
contained no plasma sequences. Therefore, although 
plasma and episomal viral quasispecies were partially 
intermingled, most recent infection events evidenced by 
specific episomal vDNA were not closely related to the 
predominant plasma clone under effective ART. Only pro-
viral sequences from the TTM subset were included in the 
predominant clusters of both active viral compartments, 
as active virion-producing cells, target cells, or both.

Effector and transitional memory CD4+ T‑cell subsets are 
the main active reservoirs
In Pt-2, no predominant plasma clone was detected after 
treatment switching (Fig. 6a). Instead, we identified three 
CXCR4-tropic clusters, two of which contained 22  % 
each and one included 8 % of all sequences obtained from 
the plasma sample. Most sequences co-localizing in these 
clusters matched with proviral sequences that were par-
ticularly prevalent in TEM+TD and TTM, thus indicating 
their major role in residual viremia production, either in 
blood or in cell-equilibrated lymphoid tissue. Most episo-
mal sequences from PBMCs were not well represented in 
these viremia-containing clusters, again suggesting that 
much residual viremia does not derive from, nor contrib-
ute to, productive replication in peripheral blood.

In Pt-2, episomal vDNA from the four purified CD4+ 
T-cell subsets was successfully sequenced and included in 
the phylogenetic tree, so that the differential distribution 
of proviral and episomal viral variants harbored by each 
CD4+ T-cell subset was examined (Fig.  6b, c). The seg-
regation of related proviral and episomal viral sequences 
at different CD4+ T-cell subsets, as observed in episomal 
clusters 2 and 3, indicates the occurrence of cross-infec-
tion events between them.

Discussion
HIV-1 preferentially infects activated CD4+ T cells, 
although resting CD4+ T cells may also be infected, albeit 
to a lesser extent [38–40]. In most cases, productive infec-
tion results in the rapid death of infected cells, but a small 

proportion of these cells can revert to a long-lived rest-
ing phenotype and establish persistent viral reservoirs 
[41]. Consequently, the susceptibility of CD4+ T-cell sub-
populations to HIV-1 infection, in addition to their mean 
half-life and homeostatic proliferation, is a key factor in 
the contribution of each subset to viral persistence in 
long-term virologically suppressed patients [42–47]. In 
this study, we evaluated the relative contribution of dif-
ferent CD4+ T-cell subsets to the total pool of infected 
cells, both in virologic failure and after effective treat-
ment switching. Despite the limited number of patients 
included in the study, we observed high heterogeneity 
between them in the distribution of the subsets in the 
viral reservoir. In line with most reported cases, we found 
that most of the proviral DNA remained in TTM and TCM 
CD4+ T cells in the patient harboring a pure CCR5-tropic 
virus [45]. However, our results also evidence the long-
term stability of viral reservoirs in naïve CD4+ T cells 
when the infection is driven by CXCR4-tropic viruses, as 
is the case of Pt-3, in whom TN cells account for >80 % of 
the total pool of infected cells at all the time points evalu-
ated. An interesting intermediate situation was observed 
in the patient harboring a mixed X4/R5 viral popula-
tion. These data are in accordance with previous studies 
showing higher susceptibility of naïve CD4+ T cells to the 
X4-mediated infection and preferential detection of X4 
proviral variants in this subset during suppressing ART 
[48–52]. We cannot rule out the possibility that a small 
portion of these cells correspond to the TSCM phenotype, 
despite they have been described to be more susceptible 
to R5-tropic HIV-1 [46, 53]. Our results highlight the key 
role of long-lived TN CD4+ T cells as a potential target for 
future therapeutic interventions aimed at the reactivation 
and/or specific targeting of the latent reservoir in patients 
in whom X4-tropic viruses may be detected (Fig. 7).

In general, the repertoire of proviral sequences found at 
the different CD4+ T-cell subsets showed a mixed genetic 
population in all patients, possibly indicating cross-infec-
tion events between subsets and/or migration events of 
proviral quasispecies as a result of cellular differentiation 
from one functional phenotype to another, as previously 
described for resting versus activated CD4+ T-cell subsets 
[54, 55].

The diversity of the tropism found in viral quasispecies 
from Pt-2 enabled us to elucidate the direction of viral 
evolution throughout the course of the infection. It also 

(See figure on previous page.) 
Fig. 4 Viral diversity during active replication. Maximum likelihood phylogenetic trees (unrooted) of viral variants detected at virologic failure (just 
before treatment switch): a Patient 1; b Patient 2; c Patient 3. Plasma viremia sequences (gold) and episomal vDNA from PBMCS (violet) are high‑
lighted; proviral DNA from the CD4+ T‑cells (grey) is also included. Major plasma/episomal clusters are highlighted when clearly distinguished (Pt‑1 
and Pt‑3), and the frequency of sequences included is color‑coded at each tree (in percentages). In B (Pt‑2), the overall result from the Env‑tropism 
prediction is indicated
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offered us the possibility of evaluating the contribution 
of each CD4+ T-cell subset to the long-lived reservoir. In 
this sense, although all memory CD4+ T cells are equally 
prone to infection by CCR5-tropic viruses, the proportion 
of proviruses carrying archival CCR5-using Env variants 
was clearly higher in the TEM+TD subsets at all the time 
points analyzed, despite the predominance of CXCR4-
tropic viruses in the plasma virus population during viro-
logic failure. Transitional intermediate variants might even 
be represented by minor clusters detected in the effector 
and transitional memory compartments and located at 
the CCR5- to CXCR4-tropism transition area of the phy-
logenetic tree. Presumably, the low fitness of these viral 
variants would account for their low frequency, as they are 
only detected as proviruses when viral replication is inhib-
ited by antiretroviral therapy [56]. However, further func-
tional assays would be needed to confirm this hypothesis.

The fact that some TEM+TD proviral clusters were 
recurrently detected at different time points after treat-
ment change reinforces the hypothesis that the highly-
differentiated effector CD4+ T-cell populations may be 
predominant reservoirs of archival proviruses, probably 
by means of long-term persistence of clonally expanded 
populations during ART, as other authors have also 
shown [47, 57]. Albeit our sorting strategy impeded 
segregation of TEM and TTD cells, the extremely low fre-
quency of the latter in peripheral blood [30] might lead to 
speculate that most of the cell-associated vDNA detected 
in this subset lies in TEM cells [45, 58]. TEM are short-lived 
in nature, and this requirement for continuous replenish-
ment in vivo has been shown to be compensated with a 
rapid proliferation rate [30]. This intrinsic feature of TEM 
CD4+ T cells increases the likelihood of this particu-
lar subset to harbor clonally expanded proviral variants. 

5.4%

11%  
 

Predominant plasma cluster (75% ) 
+ 15.7% Episomal sequences

Predominant 
episomal cluster 
32% 

Pt-3
Plasma viremia
Episomal PBMCs
Proviral  CD4+ T subsets
   main clusters: 

TN

TTM

TCM

TEM+TD

Fig. 5 Analysis of residual viremia during effective ART in Pt‑3. Maximum likelihood phylogenetic tree (unrooted) of the viral quasispecies detected 
24 weeks after switching treatment, showing plasma viremia sequences (gold), episomal vDNA from PBMCS (violet), and proviral DNA sequences 
from the CD4+ T‑cells (grey). Predominant plasma clusters and episomal clusters are indicated, and the total amount of sequences included (in 
percentages) is also indicated. Color shading identify branches containing >5 % of the proviral sequences from each subset. Sequences from TN cells 
were specially dispersed along the tree, so no specific clusters are indicated
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Further studies might elucidate whether the long-term 
survival of these stable populations is induced by homeo-
static proliferation, chronic antigen stimulation or vDNA 
integration in host genes involved in regulation of cell 
proliferation [45, 47, 59–62] and if these cells can eventu-
ally become a source of viral production.

Residual viremia in patients on ART has been exten-
sively reported, but its contribution to chronic immune 
activation is not entirely clear. Moreover, the replication 
potential of residual plasma viruses and whether they are 
able to prime viral rebound upon treatment interruption 
remain uncertain [63–65]. Indeed, the identification of 
the cellular source of residual viremia has been an active 
research field in recent years, and the data published to 

date showed genetic discordances with major vDNA pop-
ulations in the PBMCs of patients on suppressive ART 
and even in partially effective therapy [21, 28, 55, 66–68]. 
Some reports had investigated the feasibility of the CD4+ 
T-cell population itself and the circulating monocytes, as 
being responsible for residual viral production in treated 
patients; however, poor genetic identity between viral 
RNA and proviruses was reported for both cell types [63, 
69]. These observations led us to question whether the 
cellular source of residual viremia was indeed a minor 
population in PBMCs or, alternatively, a tissue-restricted 
cell type. In this regard, recent studies have shown a poor 
genetic relationship between plasma viremia and tissue-
specific reservoirs such as gut-associated lymphoid tissue 
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and cerebrospinal fluid [47, 70]. Thus, we performed an 
in-depth analysis of the predominant plasma viral vari-
ants during antiretroviral treatment and compared them 
with the vDNA repertoire from different CD4+ T-cell 
subpopulations isolated by phenotype-based cell sorting. 
We found that residual viremia sequences were prefer-
entially clustered with proviral variants prevailing in the 
TEM+TD and TTM CD4+ T-cell subsets. Of note, the lack 
of matching episomal vDNA sequences suggests that 
TEM+TD and TTM CD4+ T-cell subsets are most likely 
the source of residual viremia. This might be explained 
in part by the fact that TTM and TEM CD4+ T-cell sub-
sets typically present higher activation rates [71], thus 
providing a suitable scenario for viral production. It is 
interesting that in both individuals analyzed, the vDNA 
sequences most closely related to residual viremia are 
found in CD4+ T-cell subsets that represent a signifi-
cantly small portion of their total proviral reservoir, as 
inferred from the data in Fig. 1. This might also be a rea-
son for the lack of genetic similarity in previous experi-
mental approaches, in which these CD4+ T-cell subsets 
were not specifically sorted prior to vDNA characteriza-
tion. Future studies would verify if these cell subsets are 

indeed transcriptionally active during viral suppression 
and its potential role in viral rebound after treatment 
interruption [64].

In this study, we also aimed to evaluate the potential 
relationship between residual viremia and potential de 
novo infection under suppressive ART. Our first com-
parative analysis, which was based on samples collected 
at the time of virological failure, clearly illustrated the 
linkage between viral populations present in plasma and 
episomal vDNA, as expected on active viral replication 
[72, 73]. Interestingly, a different scenario was observed 
when we analyzed subsequent samples on suppressive 
therapy. Antiretroviral suppression led to minor co-
localization between major plasma clusters and episomal 
viral quasispecies, suggesting that, in this setting, most of 
the viruses detected in plasma are not responsible for de 
novo infection events. To our knowledge, these are the 
first studies comparing the genetic composition of these 
two viral populations. The dynamic repertoire observed 
(major clusters are not coincident at baseline and after 
treatment change) suggests the short-lived nature of both 
plasma and episomal viral populations, in contrast to the 
stable nature of proviral reservoir [74]. The significant 
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in naïve CD4+ T cells. Regardless of the viral tropism, TTM and TEM+TD cells seem to be the main producers of residual viremia, despite the relative 
proportion of infected TEM+TD is invariably small. However, de novo infection of CD4+ T cells under suppressive ART is driven by viral popula‑
tions poorly represented in residual viremia. Instead, cryptic viral replication presumably takes place in anatomical sanctuary sites (presumably at 
lymphoid tissue), where clonal activation, cell‑to‑cell transmission and suboptimal antiretroviral drug concentration might enhance the chances of 
new infection in all CD4+ T‑cell subsets. Newly infected cells, identified because of their particularity of bearing episomal vDNA can then migrate to 
periphery and be detected in blood samples. It remains to be determined if plasma viremia discordance is determined by anatomical compartmen‑
talization of productively infected cells (plasma virions may be produced by circulating CD4+ T cells or in a different anatomic location that is less 
susceptible to ART) or to an indirect effect of differential replicative capacity of proviral variants
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discordance between residual viremia and recent infec-
tion events might be due to anatomical compartmen-
talization of those two “active” reservoirs, and supports 
the potential existence of anatomical reservoirs in which 
optimal intracellular drug levels might not be achieved, 
thus favoring local viral replication (illustrated in Fig. 7). 
Such would be the case of lymphoid tissues, where the 
concentrations of some antiretroviral drugs are lower 
than in peripheral blood and where close contact between 
T cells might enhance cell-to-cell viral transmission [75]. 
In this context, clonal cell activation of latently infected 
memory CD4+ T cells might lead to temporary and 
locally limited bursts of viral reinfection in proximally 
activated target cells. Such events might lead to spatial 
compartmentalization of infected foci in lymphoid tissue, 
as previously described [76, 77], thus replenishing viral 
reservoir despite not driving systemic linear viral evolu-
tion. Subsequent mobilization from lymphoid tissues to 
blood might then enable detection of recently infected 
cells in peripheral blood [78]. Actually, a limitation of 
the present study is that lymphoid tissue samples were 
not available from these patients, so we were not able to 
confirm this hypothesis. Likewise, further characteriza-
tion of these infection foci in this compartment would 
be of major interest for the HIV cure prospects, as it has 
been reported that a significant number of rebounder/
founder variants emerge from multifocal infection in 
lymphatic tissues after treatment interruption [79]. In 
addition, rapid virion clearance by the reticuloedothelial 
system [80] and deposition of virions on FDCs, may limit 
de novo infection by virions produced in lymphoid tissue 
to cells in close anatomic proximity and reduce the likeli-
hood of those virions reaching the periphery.

The lack of concordance between residual viremia and 
viral variants driving de novo infection of CD4+ T cells 
on ART, might also reflect the relative abundance of func-
tional genomes, these being over-represented in the epi-
somal pool. From the total HIV proviral reservoir, only a 
fraction of viral genomes are competent for production 
of new virions, and a small percentage of those—the ones 
that are revealed by episomal sequencing—will be infec-
tious. This hypothesis does not exclude the possibility 
that persistent plasma viremia under ART may contain 
replication-competent viral variants, either coming from 
transcriptionally active and eventually clonally-expanded 
CD4+ T cells [62, 64, 65, 81]. Thus, residual viremia may 
also pose a major concern with regard to viral recrudes-
cence whether ART is discontinued.

Conclusions
Overall, our results led us to gain insights into the 
nature of latent HIV-1-reservoir (Fig. 7), evidencing that 
highly-differentiated CD4+ T cell clones can constitute a 

particularly long-lived proviral reservoir and that naïve 
CD4+ T cells can also establish a significant vDNA reser-
voir in patients harboring X4-tropic viruses. Likewise, we 
have observed that effector and transitional memory cells 
are the main active producers of residual viremia in ART-
treated patients, despite their relatively small contribu-
tion to the total vDNA integrant pool. Most importantly, 
viruses detected in plasma are not largely responsible for 
de novo infection events detected in circulating CD4+ T 
cells. This origin discordance, either due to limited infec-
tivity of plasma viruses or to anatomic compartmentali-
zation of productive infection indicates the relevance of 
monitoring those multiple viral RNA/DNA persistence 
biomarkers, based on their potential contribution to viral 
persistence.

Methods
Study subjects
The study included ART-experienced HIV-1-infected 
subjects who initiated a raltegravir-containing salvage 
ART regimen comprising at least 3 active drugs. Sam-
ples were obtained at several time points during the 
first 15 days after initiation of raltegravir and at months 
1, 3, and 6 thereafter. All subjects provided their signed 
informed consent to participate into the study. The Ethics 
Committee of “Germans Trias i Pujol” Hospital approved 
the study on 21 December 2007, reference #: AC-07-107.

Sorting of cell subsets
Cryopreserved aliquots of PBMCs were quickly thawed 
and stained with the following antibody combination: 
CD3-APC-Cy7 (Clone SK7), CD4-PerCP-Cy5.5 (Clone 
SK3), CD8-V500 (Clone RPA-T8), CD45RA-V450 (Clone 
HI100), CCR7-PE-Cy7 (Clone 3D12), and CD27-APC 
(Clone MT-271, all antibodies were from BD Biosciences). 
The combination was washed and immediately sorted in a 
FACSAria cell sorter (BD Biosciences). The gating strategy 
and a representative example of cell sorting is shown in 
Additional file 1 (Fig. S1). DNA extraction was performed 
immediately after cell sorting to avoid cell loss.

HIV‑1 DNA quantification
Total DNA was obtained from whole PBMC samples 
and from the purified subsets (QIAamp DNA Blood 
Mini Kit, Qiagen). Total vDNA was quantified by real-
time PCR using a set of primers and probe located 
at the 5′LTR region (RU5 Forward: 5′-TTAAGCCT 
CAATAAAGCTTGCC-3′; RU5 Reverse: 5′-GTTCGGGC 
GCCACTGCTAG-3′; RU5 Probe: 5′-CCAGAGTCA 
CACAACAGACGGGCA-3′) [82], while episomal 2-LTR 
molecular forms were quantified using a set of primers 
and probe flanked the 2-LTR junction (New C1 forward: 
5′-CTAACTAGGGAACCCACTGCT-3′; C4R reverse: 
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5′-GTAGTTCTGCCAATCAGGGAAG-3′; 2nr4nr probe: 
5′-AGCCTCAATAAAGCTTGCCTTGAGTGC-3′). 
CCR5 gene copies were also estimated to calculate the 
relative number of HIV-1 DNA copies per million cells 
(CCR5-F: 5′-GCTGTGTTTGCGTCTCTCCCAGGA-3′; 
CCR5-R: 5′-CTCACAGCCCTGTGCCTCTTCTTC-3′; 
CCR5 Probe: 5′-AGCAGCGGCAGGACCAGCCCCA 
AG-3′). In all qPCR experiments, serial dilutions of the 
2LTR-CCR5 plasmid were used to plot the standard 
curve [36].

Viral RNA
Ultracentifugation of 3  mL of each plasma sample was 
followed by a manual guanidinium thiocyanate–based 
RNA extraction protocol. After precipitation with iso-
propanol, RNA was eluted in RNAse-free water and 
subsequently reverse-transcribed using HIV-1-specific 
primers.

Env amplification for deep parallel sequencing analysis
Primers amplifying the V3 and V4 coding regions of 
the env gene (LA11: 5′-CACAGTACAATGTACAC 
ATGGA-3′; Env7: 5′-AGGGGCATACATTGCTTTTCC 
TA-3′) were used in the one-step RT-PCR of the viral 
RNA obtained from plasma samples (Superscript III and 
Platinum Taq High Fidelity, Invitrogen) and also in the 
first outer PCR amplification from the cell-associated 
DNA samples (Platinum Taq High Fidelity, Invitrogen).

Primers located upstream of env and downstream of 
the 5′LTR region, respectively (EnvA: 5′-TAGAGCCC 
TGGAAGCATCCAGGAAG-3′; LA17: 5′-TCTCCTTC 
TAGCCTCCGCTAGTCAA-3′), were used in the first 
outer PCR to specifically amplify the envelope region of 
episomal vDNA (containing either 1 or 2 LTRs) [33].

Deep sequencing protocol
The first-round PCR products described above were 
used as a template for a nested-PCR (Platinum® Taq 
High Fidelity, Life Technologies, Paisley, UK) based on 
the following 454-adapted primers: V3-454F (HXB2 
coordinates 7010-7029) and V3-454R (HIV-1HXB2 posi-
tion 7315-7332). The primers included the correspond-
ing A and B 454 adapters, a 10-mer multiple identifier 
and a TCAG sequence tag at the 5′ end. PCR products 
were purified using AMPure Magnetic Beads (Beckman 
Coulter Inc, Brea, California, USA). The concentration 
and quality of each amplicon was determined by fluo-
rometry (PicoGreen, Life Technologies, Paisley, UK) 
and spectrophotometry (Lab-on-a-Chip, Agilent Tech-
nologies, Foster City, California, USA). Equimolar pools 
were made to perform emulsion PCR using a 454-FLX 
sequencing platform with titanium chemistry (454 Life 
Sciences/Roche).

Sequencing analysis
Unique collapsed sequences were obtained using AVA 
software (v 2.7.0) for all samples, as was the represen-
tation of their frequency within each sample. Only 
sequences with a frequency of ≥1  % within the cor-
responding sample were used for phylogenetic analy-
sis. Multiple sequence alignments were created using 
MAFFT software [83]. Maximum likelihood phylogenetic 
analysis was performed using PhyML(v3.1) [84]. The 
best nucleotide substitution model was selected for each 
alignment, and a maximum likelihood phylogenetic tree 
was calculated using the Subtree Pruning and Regrafting 
(SPR) algorithm and a 100 bootstrap value.

 Tropism prediction for each of the sequences was 
inferred using the Geno2Pheno algorithm (www.
geno2pheno.org) with a 10 % FPR threshold.
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